Skip to main content
Log in

Fluid-rock interaction in the Kangankunde Carbonatite Complex, Malawi: SEM based evidence for late stage pervasive hydrothermal mineralisation

  • Topical Issue
  • Published:
Central European Journal of Geosciences

Abstract

The Kangankunde Carbonatite Complex from the Cretaceous Chilwa Alkaline Province in southern Malawi contains ankeritic and siderite carbonatite that are affected by late stage remobilisation by a carbothermal or hydrothermal fluid. The coarse pegmatitic siderite carbonatite that hosts exotic minerals like monazite, synchysite, bastnasite, strontianite and apatite in vugs and cavities constitutes some of the richest rare earth deposits in the world. Besides these minerals, our studies reveal the presence of collinsite and aragonite from the siderite carbonatite. Fine drusy monazites are seen as overgrowths on thin veinlets of siderite within the rare earth mineralised zones. We present unambiguous SEM-based surface textural evidence such as presence of dissolution-corrosion features like etching along cleavage, solution channels, solution pits, sinstered scaly surface, etc. along with rare earth mineralisation that suggests the exotic minerals in the siderite carbonatite did not crystallise from carbonate magma and are a result of sub-solidus processes involving carbonatite-derived fluids. We believe that the monazite-synchysitebastnasite-strontianite-collinsite assemblages were formed by juvenile post magmatic hydrothermal alteration of pre-existing carbonatite by a complex CO2-rich and alkali chloride-carbonate-bearing fluid at ∼250 to 400°C in an open system. This late ‘magmatic’ to ‘hydrothermal’ activity was responsible for considerable changes in rock texture and mineralogy leading to mobility of rare earth elements during fluid-rock interaction. These aspects need to be properly understood and addressed before using trace and rare earth element (REE) geochemistry in interpreting carbonatite genesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Streckeisen A., Classification and nomenclature of volcanic rocks, lamprophyres, carbonatites and melilitic rocks. IUGS Subcomission on the Systematics of Igneous Rocks. Geol Rundsch, 1980, 69, 194–207

    Google Scholar 

  2. Dobson D.P., Jones A.P., Rabe R., Sekine T., Kurita K., Taniguchi T., Kondo T., Kato T., Shimomura O., Urakawa S., In-situ measurement of viscosity and density of carbonate melts at high pressure. Earth. Planet. Sci. Lett., 1996, 143(1–4), 207–215

    Article  Google Scholar 

  3. Wolff J.A., Physical properties of carbonatite magmas inferred from molten salt data, and application to extraction patterns from carbonatite-silicate magma chambers. Geol. Mag., 1994, 131: 145–153

    Article  Google Scholar 

  4. Nelson D.R., Chivas A.R., Chappell B.W., McCulloch M.T., Geochemical and isotopic systematics in carbonatites and implications for the evolution of oceanisland sources. Geochim. Cosmochim. Acta., 1988, 52, 1–17

    Article  Google Scholar 

  5. Woolley A.R., and Kempe D.R.C., Carbonatites: Nomenclature, average chemical compositions and element distribution. In: Bell K. (Ed.), Carbonatites: Genesis and Evolution. Unwin Hyman, London, 1989, 1–14

    Google Scholar 

  6. Jones A.P., Genge M., Carmody L., Carbonate Melts and Carbonatites. Rev. Mineral. Geochem., 2013, 75, 289–322

    Article  Google Scholar 

  7. Gittins J., The origin and evolution of carbonatite magmas. In: Bell K. (Ed.), Carbonatites: Genesis and Evolution, Unwin Hyman, London, 1989, 580–600

    Google Scholar 

  8. Gittins J., and Jago B.C., Differentiation of natrocarbonatite magma at Oldoinyo Lengai volcano, Tanzania. Mineral. Mag., 1998, 62, 759–768

    Article  Google Scholar 

  9. Freestone I.C., and Hamilton D.L., The role of liquid immiscibility in the genesis of carbonatites — An experimental study. Contrib. Mineral. Petrol., 1980, 73(2), 105–117

    Article  Google Scholar 

  10. Church A.A., and Jones A.P., Silicate-Carbonate Immiscibility at Oldoinyo-Lengai. J. Petrol., 1995, 36(4), 869–889

    Article  Google Scholar 

  11. Lee W.J., and Wyllie P.J., Liquid immiscibility between nephelinite and carbonatite from 1.0 to 2.5 GPa compared with mantle melt compositions. Contrib. Mineral. Petrol., 1997, 127(1), 1–16

    Article  Google Scholar 

  12. Dawson J.B., Peralkaline nephelinite-natrocarbonatite relationships at Oldoinyo Lengai, Tanzania. J. Petrol., 1998, 39(11–12), 2077–2094

    Article  Google Scholar 

  13. Halama R., Vennemann T., Siebel W., Markl G., The Gronnedal-Ika carbonatite-syenite complex, South Greenland: carbonatite formation by liquid immiscibility. J. Petrol., 2005, 46(1), 191–217

    Article  Google Scholar 

  14. Brooker R.A., and Kjarsgaard B.A., Silicate-carbonate liquid immiscibility and phase relations in the system SiO2-Na2O-Al2O3-CaO-CO2 at 0.1–2.5 GPa with applications to carbonatite genesis. J. Petrol., 2011, 52(7–8), 1281–1305

    Article  Google Scholar 

  15. Wallace M.E., and Green D.H., An experimental determination of primary carbonatite magma composition. Nature, 1988, 335, 343–346

    Article  Google Scholar 

  16. Sweeney R.J., Carbonatite melt compositions in the Earth’s mantle. Earth. Planet. Sci. Lett., 1994, 128(3–4), 259–270

    Article  Google Scholar 

  17. Harmer R.E., and Gittins J., The Case for Primary, Mantle-derived Carbonatite Magma. J. Petrol., 1998, 39(112), 1895–1903

    Article  Google Scholar 

  18. Harmer R.E., Lee C.A., Eglington B.M., A deep mantle source for carbonatite magmatism; evidence from the nephelinites and carbonatites of the Buhera district, SE Zimbabwe. Earth. Planet. Sci. Lett., 1998, 158, 131–142

    Article  Google Scholar 

  19. Yang K-F, Fan H-R, Santosh F., Hu F.F., Wang KY., Mesoproterozoic carbonatitic magmatism in the Bayan Obo deposit, Inner Mongolia, North China: constraints for the mechanism of super accumulation of rare earth elements. Ore Geol. Rev., 2011, 40(1), 122–131

    Article  Google Scholar 

  20. Mitchell R.H., Carbonatites and carbonatites and carbonatites. Can. Mineral., 2005, 43(6), 2049–2068

    Article  Google Scholar 

  21. Garson M.S., Campbell-Smith W., Carbonatite and agglomeratic vents in the Western Shire Valley. Geol. Surv. Malawi, 1965, Memoir 3

    Google Scholar 

  22. Gieré, R., Formation of rare earth minerals in hydrothermal systems. In: Jones A.P., Wall F., and Williams C.T. (Eds.), Rare Earth Minerals: Chemistry, Origin and Ore Deposits Chapman & Hall, London, 1996, 105–150

    Google Scholar 

  23. Wall F., and Mariano N., Rare earth minerals in carbonatites: a discussion centered on the Kangankunde carbonatite, Malawi. In: Jones A.P., Wall F., and Williams C.T. (Eds.), Rare Earth Minerals: Chemistry, Origin and Ore Deposits Chapman & Hall, London, 1996, 193–225

    Google Scholar 

  24. Smith M.P., Henderson P., Campbell L.S., Fractionation of the REE during hydrothermal processes: constraints from the Bayan Obo Fe-REE-Nb deposit, Inner Mongolia, China. Geochim. Cosmochim. Acta., 2000, 64, 3141–3160

    Article  Google Scholar 

  25. Yang Xueming, and Le Bas M.J., Chemical compositions of carbonate minerals from Bayan Obo, Inner Mongolia, China: implications for petrogenesis. Lithos, 2004, 72, 97–116

    Article  Google Scholar 

  26. Ngwenya B.T., Hydrothermal rare earth mineralisation in carbonatites of the Tundulu complex, Malawi: processes at the fluid/rock interface. Geochim. Cosmochim. Acta., 1994, 58, 2061–2072

    Article  Google Scholar 

  27. Andrade F.R.D., Möller P., Lüders V., Dulski P. and Gilg H.A., Hydrothermal rare earth elements mineralisation in the Barra do Itapirauã carbonatite, southern Brazil: behavior of selected trace elements and stable isotopes (C, O). Chem. Geol., 1999, 155, 91–113

    Article  Google Scholar 

  28. Ruberti E., Castorina F., Censi P., Comin-Chiaramonti P., Gomes C.B., Antonini P., Andrade F.R.D., The geochemistry of the Barra do Itapirapuã carbonatite (Ponta Grossa Arch, Brazil): a multiple stockwork. Am. Earth Sci., 2002, 15, 215–228

    Article  Google Scholar 

  29. Zaitsev A., Sinai Yu. M., Chakhmouradian A.R., Lepekhina E.N., Pyrrhotite-pyrite association in carbonatite series rocks of Khibina alkaline massif. Zap. Vser. Mineral. Obshchest, 1998, 127(4), 110–119 (in Russian)

    Google Scholar 

  30. Ruberti E., Enrich G.E., Comin-Chiaramonti P.C.B., Gomes C.B., Hydrothermal rare earth mineralisation in the Barra do Itapirapuã (Brazil), multiple stockwork carbonatite. Can. Mineral., 2008, 46, 901–914

    Article  Google Scholar 

  31. Doroshkevich A.G., Viladkar S.G., Ripp G.S., Burtseva M.V., Hydrothermal REE mineralisation in the Amba Dongar carbonatite complex, Gujarat, India. Can. Mineral., 2009, 47, 1105–1116

    Article  Google Scholar 

  32. Woolley A.R., Lithosphere metasomatism and the petrogenesis of the Chilwa Province of alkaline igneous rocks and carbonatites, Malawi. J Afr. Earth Sci., 1987, 6, 891–898

    Google Scholar 

  33. Woolley A.R., The Chilwa alkaline igneous province of Malawi: a review. In: Kampunzu A.B., Lubala R.T. (Ed.), Magmatism in Extensional Structural Settings. The Phanerozoic African Plate, Springer Verlag, Berlin, 1991, 377–409

    Chapter  Google Scholar 

  34. Garson M.S., Carbonatites in Malawi. In: Tuttle, O.F. and Gittins, J. (Eds.), Carbonatites. Interscience Publishers (John Wiley & Sons), New York, 1966, 33–71

  35. Karmalkar N.R., Duraiswami R.A., Hoffman A., Unusual rift related carbonatite magmatism from Southern Malawi, Southeast Africa and its implications in crustal evolution. In: Karmalkar N.R., Duraiswami R.A., Pawar N.J., Sivaji Ch. (Eds.), Origin and evolution of the Deep Continental Crust, Narosa Publishing House, New Delhi, 2010, 153–172

    Google Scholar 

  36. Holt D.N., The Kangankunde Hill rare earth prospectresults of an economic investigation. Geological Survey Department, Ministry of Natural Resources, Government of Malawi. Bull. No. 20, 1965, 1–130

    Google Scholar 

  37. King A.L., The mineral industry of Malawi. Minerals yearbook: mineral industries of Africa, Bureau of Mines, 1991, 3, 158–163

    Google Scholar 

  38. Wall F., and Mariano A.N., Rare earth minerals in carbonatites: a discussion centered on the Kangankunde carbonatite, Malawi. In: Jones A.P., Wall F., Williams C.T., (Eds.) Rare Earth Minerals: Chemistry, Origin and Ore Deposits. Chapman & Hall, London, U.K. 1996, 193–225

    Google Scholar 

  39. Cressey G.C., Wall F., Cressey A.A., Differential REE uptake by sector growth of monazite. Mineral. Mag., 1999, 63(6), 813–828

    Article  Google Scholar 

  40. Donnay G., and Donnay J.D.H., The crystallography of bastnäsite, parisite, röntgenite and synchysite. Am. Mineral., 1953, 38, 932–963

    Google Scholar 

  41. Ni Yunxiang, Hughes J.M., Mariano A.N., The atomic arrangement of bastnäsite-(Ce), Ce(CO3)F, and structural elements of synchysite-(Ce), röntgenite-(Ce), and parisite-(Ce). Am. Mineral., 1993, 78, 415–418

    Google Scholar 

  42. Ni Yunxiang, Post J.E., Hughes J.M., The crystal structure of parisite-(Ce), Ce2CaF2 (CO3)3. Am. Mineral., 2000, 85, 251–258

    Google Scholar 

  43. Wang Liben, Ni Yunxiang, Hughes J.M., Bayliss P., Drexler J.W., The atomic arrangement of synchysite-(Ce), CeCaF(CO3)2. Can. Mineral., 1994, 32, 865–871

    Google Scholar 

  44. Bone V.I., On the terminology of the phenomena of mutual crystal orientation. Acta Crystallogr., 1972, A28, 508–512

    Article  Google Scholar 

  45. WilIams-Jones A.E., and Wood S.A., A preliminary petrogenetic grid for REE fluorocarbonates and associated minerals. Geochim. Cosmochim. Acta., 1992, 56, 725–738

    Article  Google Scholar 

  46. Robinson G.W., Van Velthuisen J., Ansell H.G., Sturman B.D., Mineralogy of the Rapid Creek and Big Fish River area, Yukon Territory. Mineral. Rec., 1992, 23, 1–47

    Google Scholar 

  47. Liferovich R.P., Pakhomovsky Y.A., Bogdanova A.N., Balaganskaya E.G., Pakhomovsky Y.A., Bogdanova A.N., Balaganskaya E.G., Chukanov N.V., Collinsite in hydrothermal assemblages related to carbonatites in the Kovdor Complex, Northwestern Russia. The Can. Mineral., 2001, 39, 1081–1094

    Article  Google Scholar 

  48. Zambezi P., Hale M., Voncken J.H.L., Touret J.L.R., Bastnäsite-(Ce) at the Nkombwa Hill carbonatite complex, Isoka District, northeast Zambia. Mineral. Petrol., 1997, 59, 239–250

    Article  Google Scholar 

  49. Förster H.J., Synchysite-(Y)-synchysite-(Ce) solid solutions from Markersbach, Erzgebirge, Germany: REE and Th mobility during high-T alteration of highly fractionated aluminous A-type granites. Mineral. Petrol., 2001, 72, 259–280

    Article  Google Scholar 

  50. Burt D.M., Compositional and phase relations among rare earth elements. In: Lipin B.R., and McKay, G.A. (Eds.), Geochemistry and mineralogy of rare earth elements. Rev. Mineral., 1989, 21, 259–307

    Google Scholar 

  51. Kapustin Yu. L., Mineralogy of carbonatites. Amerind Publishing, New Delhi, 1980, 259 (Translated from Russian: Mineralogiya Karbonatitov, 1971) Nauka Publishers, Moscow

    Google Scholar 

  52. Le Bas M.J., Diversification of carbonatite. In: Bell K., (Ed.) Carbonatites-genesis and evolution. Unwin Hyman, London, 1989, 428–447

    Google Scholar 

  53. Ohde S., Determination of rare earth elements in carbonatites from the Kangankunde Mine, Malawi by instrumental neutron activation analysis. J. Radioanal. Nucl. Ch., 2003, 257(2), 433–435

    Article  Google Scholar 

  54. Wall F., Barreiro B.A., Spire B., Isotopic evidence for late-stage processes in carbonatites: rare earth mineralisation in carbonatites and quartz rocks at Kangankunde, Malawi. Goldschmidt Conference Edinburgh, 1994, 951–952

    Google Scholar 

  55. Wall F., Zaitsev A., Jones A.P., Mariano A.N., Rareearth rich carbonatites: a review and latest results. J. Geosci., 1997, 42, no. 3, 49

    Google Scholar 

  56. Dowman E., Rankin A.H., Wall F. Fluid and solid inclusion evidence for late-stage mobility of zirconium, titanium and REE in carbonatite systems. ECROFIXIX, Berne, Switzerland, 2007, Program with abstracts

    Google Scholar 

  57. Rankin A.H., Carbonatite associated rare metal deposits: composition and evolution of ore-forming fluidsthe fluid inclusion evidence. In: Linnen R.L., Samson I.M. (Eds.), Rare-Earth Geochemistry and Mineral Deposits, Geological Association of Canada, GAC Short Course Notes, 2005, 17, 299–314

    Google Scholar 

  58. Bühn B., Rankin A.H., Composition of natural, volatilerich Na-Ca-REE-Sr carbonatitic fluids trapped in fluid inclusions. Geochim. Cosmochim. Acta., 1999, 63, 3781–3797

    Article  Google Scholar 

  59. Ting W., Burke E.A.J., Rankin A.H., Woolley A.R., Characterisation and petrogenetic significance of CO2, H2O and CH4 fluid inclusions in apatite from the Sukulu carbonatite, Uganda. Eur. J. Mineral., 1994, 6, 787–803

    Article  Google Scholar 

  60. Pirogov B.I., Dependence of Technological Properties of the Kovdor Apatite and Heavy Fraction on the Kovdor Ores Peculiarities. Sci. Report, 1987, Krivorozhsky Gornorudny Inst. (in Russian)

    Google Scholar 

  61. Bowers T.S., Helgeson H.C., Calculation of the thermodynamic and geochemical consequences of non ideal mixing in the system H2O-CO2-NaCl on phase relations in geologic systems: equation of state for H2OCO2-NaCl fluids at high pressures and temperatures. Geochim. Cosmochim. Acta., 1983, 47, 1247–1275

    Article  Google Scholar 

  62. Bulakh A.G., and Ivanikov V.V., The Problems of Mineralogy and Petrology of Carbonatites. Leningrad University Publ., Leningrad, Russia 1984 (in Russian)

    Google Scholar 

  63. Dennis K.J., and Schrag D.P., Clumped isotope thermometry of carbonatites as an indicator of diagenetic alteration. Geochim. Cosmochim. Acta., 2010, 74, 4110–4122

    Article  Google Scholar 

  64. Ghosh P., Adkins J., Affek H., Balta B., Guo W.F., Schauble E.A., Schrag D., Eller J.M., C-13-O-18 bonds in carbonate minerals: a new kind of paleothermometer. Geochim. Cosmochim. Acta., 2006, 70(6), 1439–1456

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raymond A. Duraiswami.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duraiswami, R.A., Shaikh, T.N. Fluid-rock interaction in the Kangankunde Carbonatite Complex, Malawi: SEM based evidence for late stage pervasive hydrothermal mineralisation. cent.eur.j.geo. 6, 476–491 (2014). https://doi.org/10.2478/s13533-012-0192-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s13533-012-0192-x

Keywords

Navigation