Skip to main content
Log in

Utilization of a comparison of curvatures for land surface segmentation

  • Research Article
  • Published:
Central European Journal of Geosciences

Abstract

Utilization of a new geomorphometric variable for land surface segmentation — the angle of absolute curvatures — is a main goal of the paper. The angle of absolute curvatures is defined as the difference between the orientation of maximal curvature (field independent) and the orientation of the greater of the profile or the tangential curvature. Land-forms separated by three types of borders (A, B, C) can be delimited from the field of angles of absolute curvatures. Borders of A type are connected with a local extreme of slope. Borders of B and C type are connected with a change to the priority of either profile or tangential curvature, as shown in computation, respectively. Fields of altitude, slope, profile curvature, tangential curvature and rotor curvature are reflected by an algorithm. Distinct borders in the field of the angles of absolute curvatures are connected with a sudden change of value and with zero isolines in the previously mentioned fields. Spatially closed entities generated by this proposed algorithm are considered to be a variant of the elementary forms of the land surface. The quality of information generated by this algorithm depends on the size of the grid mesh of the input digital elevation model. The algorithm in its current state is suitable for locating the borders of some elementary forms in the first stage of geomorphology mapping.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Burian L., Analysis of relationship between gravity field dependent curvatures and field independent curvatures of land surface. Master thesis, Comenius University, Bratislava, 2012 (In Slovak)

    Google Scholar 

  2. Pike R J., Evans I S., Hengl T., Geomorphometry: A brief guide, In: Hengel T., Reuter H I., Geomorphometry: concepts, software, applications, Elsevier, 2008

    Google Scholar 

  3. Pike R., A bibliography of Terrain Modelling (Geomorphometry) the Quantitative representation of Topography, Open file report, 2002, 02-465

    Google Scholar 

  4. Evans I.S, Minár J., Classification of Geomorphometric variables, 2011, http://www.geomorphometry.org/system/files/EvansMinar2011geomorphometry.pdf

    Google Scholar 

  5. Sharpy P.A., Land Surface in Gravity Points Classification by a Complete System of Curvatures, Mathematical Geology, 3,27, 1995, 373–390

    Article  Google Scholar 

  6. Evans I.S., General geomorphometry, derivatives of altitude and descriptive statistics. In: Chorley R.J (Ed.), Spatial Analysis in Geomorphology. Harper and Row, New York, 1972, 17–90

    Google Scholar 

  7. Minár J., Evans I.S, Elementary forms for land surface segmentation: The theoretical basis of terrain analysis and geomorphological mapping, Geomorphology, 95, 2008, 236–259

    Article  Google Scholar 

  8. Minár J., Fuzzy approach in geomorphological mapping, Geomorphologia Slovaca, 1, 2006, 8–13

    Google Scholar 

  9. Minár J., Machova Z., Review of approaches for segmentation of land surface, Geomorphologia Slovaca, 2, 2004, 74–80 (in Slovak)

    Google Scholar 

  10. Waters R. S., Morphological mapping, Geography, 1958, 43, 10–17

    Google Scholar 

  11. Savigear R. A. G., A technique of morphological mapping, Annals of the Association of American Geographers, 1965, 55, 514–538

    Article  Google Scholar 

  12. Dalrymple J.B., et al., An hypothetical nine unit landsurface model, Zeitschrift f"ur Geomorphologie, 1968, 12, 60–76

    Google Scholar 

  13. Conacher A. J., dalrymple J. B. The nine-unit ladsurface model: An approach to pedogeomorphic research, Geoderma, 18, 1977, 1–154

    Article  Google Scholar 

  14. Young A., Slopes, Oliver & Boyd, Edinburgh, 1972

    Google Scholar 

  15. Lastoczkin A. N., Morphodynamical analysis, Nedra, Leningrad, 1987 (in Russian)

    Google Scholar 

  16. Lastoczkin A. N., Surface of land surface (Statistical methods and approaches in geomorphology), Nedra, Leningrad, 1991 (in Russian)

    Google Scholar 

  17. Minár J., The principles of the elementary geomorphological regionalization, Acta Facultatis Rerum Naturalium Universitatis Comenianae, 1992, 33, 185–198

    Google Scholar 

  18. Minár J., et al., Geoecological research and mapping in large scales. In: Geograficke spektrum 3, Geografika, Bratislava, 2001 (in Slovak)

    Google Scholar 

  19. Speight J. G., A parametric approach to landform regions. In: Brown E.H., Waters R.S. (Eds.), Progress in Geomorphology: Papers in Honour of David L. Linton, Alden Press, London, 1974, 213–230

    Google Scholar 

  20. Brandli M., Hierarchical models for the definition and extraction of terrain features. In: Burrough, P.A., Frank A.U. (Eds.), Geographic Objects with Indeterminate Boundaries, Taylor & Francis, London, 1996, 257–270

    Google Scholar 

  21. Irvin B. J., et al., Fuzzy and isodata classification of landform elements for digital terrain data in Pleasant Valley, Wisconsin, Geoderma, 77, 1997, 137–154

    Article  Google Scholar 

  22. Dragut E., Eisank C. Automated object-based classification of topography from SRTM data, Geomorphology, 141–142, 2012, 21–33

    Article  Google Scholar 

  23. Richter H., Eine neue Methode der grossmassstabigen Kartierung des Reliefs, Gotha, 106, 1962, 309–312

    Google Scholar 

  24. Troeh F. R., Landforms equations fitted to contour maps. American Journal of Science, 263, 1965, 616–627

    Article  Google Scholar 

  25. Krcho J., State of czechoslovak cartographic science and the problem of thematical maps, Acta geologica et geographica, 3, 1963, 204–215 (in Slovak)

    Google Scholar 

  26. Krcho J., Morphometric analysis of relief on the basis of geometric aspect of field theory. Acta geographica Universitatis Comenianae, 1, 1973, 1–233

    Google Scholar 

  27. Krcho J., Morphometrical analysis and digital elevation models, VEDA, Bratislava, 1990 (in Slovak)

    Google Scholar 

  28. Gauss C.F., Disquisitiones generales circa superficies curvas, Comentationes Societatis Regiae Scientiarum Gottingensis Recentiores, 9,99, 1928, 146

    Google Scholar 

  29. Efremov Y.K., An experience on morphological classification of elements and simple forms of topography. Voprosy Geografii, 11,109, 1949, 136 (in Russian).

    Google Scholar 

  30. Sharpy P. A., Topographic method of second derivatives. In: Stepanov, I.N. (Ed.), The Geometry of Earth Surface Structures, Poushchino Scientific Center, Poushchino, 1991, 28–58 (in Russian)

    Google Scholar 

  31. Parson A J., Hillslope Form, Routledge, London, 1988

    Book  Google Scholar 

  32. Goodchild M. F. Spatial Autocorelation, Geo Books, Norwich, 1986

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Libor Burian.

About this article

Cite this article

Burian, L., Minár, J. Utilization of a comparison of curvatures for land surface segmentation. cent.eur.j.geo. 5, 560–569 (2013). https://doi.org/10.2478/s13533-012-0143-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s13533-012-0143-6

Keywords

Navigation