Skip to main content
Log in

Impact damage assessment by using peridynamic theory

  • Research Article
  • Published:
Central European Journal of Engineering

Abstract

This study presents an application of peridynamic theory for predicting residual strength of impact damaged building components by considering a reinforced panel subjected to multiple load paths. The validity of the approach is established first by simulating a controlled experiment resulting in mixed-mode fracture of concrete. The agreement between the PD prediction and the experimentally observed behavior is remarkable especially considering the simple material model used for the concrete. Subsequently, the PD simulation concerns damage assessment and residual strength of a reinforced panel under compression after impact due to a rigid penetrator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Klein P.A., Foulk J.W., Chen E.P., Wimmer S.A., et al. Physics-based modeling of brittle fracture: Cohesive formulations and the application of meshfree methods, Theor. Appl. Fract. Mech., Vol. 37, 2001, 99–166

    Article  Google Scholar 

  2. Moes N., Dolbow J., Belytschko T., A finite element method for crack growth without remeshing, Int. J. Numer. Meth. Eng., Vol. 46, 1999, 131–150

    Article  MATH  Google Scholar 

  3. Zi G., Rabczuk T., Wall W., Extended Meshfree Methods without Branch Enrichment for Cohesive Cracks, Comput. Mech., Vol. 40, 2007, 367–382

    Article  MATH  Google Scholar 

  4. Silling, S.A., Reformulation of Elasticity Theory for Discontinuities and Long-Range Forces, J. Mech. Phys. Solid, Vol. 48, 2000, 175–209

    Article  MathSciNet  MATH  Google Scholar 

  5. Silling S.A, Epton M., Weckner O., Xu J., et al., Peridynamics States and Constitutive Modeling, J. Elasticity, Vol. 88, 2007, 151–184

    Article  MathSciNet  MATH  Google Scholar 

  6. Kilic B., Peridynamic Theory for Progressive Failure Prediction in Homogeneous and Heterogeneous Materials, Ph.D. dissertation, Department of Aerospace and Mechanical Engineering, Univ. Arizona, Tucson, Arizona, 2008

    Google Scholar 

  7. Silling S.A., Dynamic Fracture Modeling with a Meshfree Peridynamic Code, Second MIT Conference on Computational Fluid and Solid Mechanics, edited K.J. Bathe, Elsevier, Amsterdam, 2003, 641–644

    Google Scholar 

  8. Silling S.A., Askari, E., Peridynamic Modeling of Impact Damage, PVP, Vol. 489, edited by F.J. Moody, American Society of Mechanical Engineers, 2004, 197–205

  9. Silling S.A., Askari, E., A Meshfree Method Based on the Peridynamic Model of Solid Mechanics, Computers and Structures, Vol. 83, 2005, 1526–1535

    Article  Google Scholar 

  10. Gerstle W., Sau N., Silling S., Peridynamic modeling of concrete structures, Nucl. Eng. Des., Vol. 237,Issues 12–13, July 2007, 1250–1258

    Article  Google Scholar 

  11. Silling S.A., Bobaru F., Peridynamic Modeling of Membranes and Fibers, Int. J. Non. Lin. Mech., Vol. 40, 2005, 395–409

    Article  MATH  Google Scholar 

  12. Askari E., Xu J., Silling S., Peridynamic Analysis of Damage and Failure in Composites, 44th AIAA/ASME/ASCE/AHS/ASC Aerospace Sciences Meeting and Exhibit, Reno, Nevada, 2006, AIAA 2006-88

    Google Scholar 

  13. Colavito K.W., Kilic B., Celik E., Madenci E., Effect of Void Content on Stiffness and Strength of Composites by a Peridynamic Analysis and Static Indentation Test, 48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Honolulu, Hawaii, 2007, Paper No. 2007-2251

  14. Xu J., Askari A., Weckner O., Razi H., Silling S., Damage and Failure Analysis of Composite Laminates under Biaxial Loads, 48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Honolulu, Hawaii, 2007, AIAA 2007-2315

  15. Warren T.L., Silling S.A., Askari A., Weckner O., et al., A Non-ordinary State-based Peridynamic Method to Model Solid Material Deformation and Fracture, Int. J. Solid Struct., Vol. 46, 2009, 1186–1195

    Article  MATH  Google Scholar 

  16. Foster J.T., Silling S.A., Chen W.W., Viscoplasticity Using Peridynamics, Sandia Report, SAND2008-7835, 2008

  17. Kilic B., Agwai A., Madenci E., Peridynamic Theory for Progressive Damage Prediction in Centre-Cracked Composite Laminates, Compos. Struct., Vol. 90,Issue 2, 2009, 141–151

    Article  Google Scholar 

  18. Kilic B., Madenci E., Structural Stability and Failure Analysis Using Peridynamic Theory, Int. J. Non. Lin. Mech., Vol. 44,Issue 8, 2009, 845–854

    Article  MATH  Google Scholar 

  19. Gálvez J.C., Elices M., Guinea G.V., Planas J., Mixed mode fracture of concrete under proportional and nonproportional loading, Int. J. Fract., 94: 267–284, 1998

    Article  Google Scholar 

  20. EMU website, http://www.sandia.gov/emu/emu.htm

  21. Ha Y.D., Bobaru F., Characteristics of dynamic brittle fracture captured with peridynamics, Eng. Fract. Mech., Vol. 78, 2011, 1156–1168

    Article  Google Scholar 

  22. Demmie P.N., Silling S.A., An approach to modeling extreme loading of structures using peridynamics, J. Mech. Mater. Struct., Vol. 2, 2007, 1921–1945

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Oterkus, E., Guven, I. & Madenci, E. Impact damage assessment by using peridynamic theory. cent.eur.j.eng 2, 523–531 (2012). https://doi.org/10.2478/s13531-012-0025-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s13531-012-0025-1

Keywords

Navigation