Skip to main content
Log in

Region-specific neuron and synapse loss in the hippocampus of APPSL/PS1 knock-in mice

  • Research Article
  • Published:
Translational Neuroscience

Abstract

Transgenic mouse models with knock-in (KI) expression of human mutant amyloid precursor protein (APP) and/or human presenilin 1 (PS1) may be helpful to elucidate the cellular consequences of APP and PS1 misprocessing in the aging brain. Age-related alterations in total numbers of neurons and in numbers of synaptophysin-immunoreactive presynaptic boutons (SIPB), as well as the amyloid plaque load were analyzed in the hippocampal dentate gyrus (DG), CA3, and CA1-2 of 2- and 10-month-old APPSL/PS1 homozygous KI, APPSL (expressing human mutant APP751 carrying the Swedish [K670N/M671L] and London [V717I] mutations under Thy-1 promoter), and PS1 homozygous KI mice (expressing human PS1 mutations [M233T and L235P]). APPSL/PS1 homozygous KI mice, but neither APPSL mice nor PS1 homozygous KI mice, showed substantial agerelated loss of neurons (−47.2%) and SIPB (−22.6%), specifically in CA1-2. PS1 homozygous KI mice showed an age-related increase in hippocampal granule cell numbers (+37.9%). Loss of neurons and SIPB greatly exceeded the amount of local extracellular Aβ aggregation and astrocytes, whereas region-specific accumulation of intraneuronal Aβ preceded neuron and synapse loss. An age-related increase in the ratio of SIPB to neuron numbers in CA1-2 of APPSL/PS1 homozygous KI mice was suggestive of compensatory synaptic plasticity. These findings indicate a region-selectivity in intra- and extraneuronal Aβ accumulation in connection with neuron and synapse loss in the hippocampus of APPSL/PS1 homozygous KI mice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Scheff S.W., Price D.A., Schmitt F.A., Scheff M.A., Mufson E.J., Synaptic loss in the inferior temporal gyrus in mild cognitive impairment and Alzheimer’s disease, J. Alzheimers Dis., 2011, 24, 547–557

    PubMed  Google Scholar 

  2. Selkoe D.J., Alzheimer’s disease is a synaptic failure, Science, 2002, 298, 789–791

    Article  PubMed  CAS  Google Scholar 

  3. Walsh D.M., Selkoe D.J., Deciphering the molecular basis of memory failure in Alzheimer’s disease, Neuron, 2004, 44, 181–193

    Article  PubMed  CAS  Google Scholar 

  4. Yu W., Lu B., Synapses and dendritic spines as pathogenic targets in Alzheimer’s disease, Neural Plast., 2012, 2012, 1–8

    Article  CAS  Google Scholar 

  5. Tam J.H., Pasternak S.H., Amyloid and Alzheimer’s disease: inside and out, Can. J. Neurol. Sci., 2012, 39, 286–298

    PubMed  Google Scholar 

  6. Luque F.A., Jaffe S.L., The molecular and cellular pathogenesis of dementia of the Alzheimer’s type an overview, Int. Rev. Neurobiol., 2009, 84, 151–165

    Article  PubMed  CAS  Google Scholar 

  7. Fjell A.M., Walhovd K.B., Neuroimaging results impose new views on Alzheimer’s disease-the role of amyloid revised, Mol. Neurobiol., 2012, 1–20

    Google Scholar 

  8. Hardy J., Selkoe D.J., The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics, Science, 2002, 297, 353–356

    Article  PubMed  CAS  Google Scholar 

  9. Mucke L., Masliah E., Yu G.Q., Mallory M., Rockenstein E.M., Tatsuno G., et al., High-level neuronal expression of abeta 1–42 in wild-type human amyloid protein precursor transgenic mice: synaptotoxicity without plaque formation, J. Neurosci., 2000, 20, 4050–4058

    PubMed  CAS  Google Scholar 

  10. Klein W.L., Krafft G.A., Finch C.E., Targeting small Abeta oligomers: the solution to an Alzheimer’s disease conundrum?, Trends Neurosci., 2001, 24, 219–224

    Article  PubMed  CAS  Google Scholar 

  11. Schmitz C., Rutten B.P., Pielen A., Schafer S., Wirths O., Tremp G., et al., Hippocampal neuron loss exceeds amyloid plaque load in a transgenic mouse model of Alzheimer’s disease, Am. J. Pathol., 2004, 164, 1495–1502

    Article  PubMed  Google Scholar 

  12. Boncristiano S., Calhoun M.E., Howard V., Bondolfi L., Kaeser S.A., Wiederhold K.H., et al., Neocortical synaptic bouton number is maintained despite robust amyloid deposition in APP23 transgenic mice, Neurobiol. Aging, 2005, 26, 607–613

    Article  PubMed  CAS  Google Scholar 

  13. Dickey C.A., Loring J.F., Montgomery J., Gordon M.N., Eastman P.S., Morgan D., Selectively reduced expression of synaptic plasticityrelated genes in amyloid precursor protein + presenilin-1 transgenic mice, J. Neurosci., 2003, 23, 5219–5226

    PubMed  CAS  Google Scholar 

  14. Hsia A.Y., Masliah E., McConlogue L., Yu G.Q., Tatsuno G., Hu K., et al., Plaque-independent disruption of neural circuits in Alzheimer’s disease mouse models, Proc. Natl. Acad. Sci. USA, 1999, 96, 3228–3233

    Article  PubMed  CAS  Google Scholar 

  15. Rutten B.P., Van der Kolk N.M., Schafer S., van Zandvoort M.A., Bayer T.A., Steinbusch H.W., et al., Age-related loss of synaptophysin immunoreactive presynaptic boutons within the hippocampus of APP751SL, PS1M146L, and APP751SL/PS1M146L transgenic mice, Am. J. Pathol., 2005, 167, 161–173

    Article  PubMed  CAS  Google Scholar 

  16. West M.J., Bach G., Soderman A., Jensen J.L., Synaptic contact number and size in stratum radiatum CA1 of APP/PS1DeltaE9 transgenic mice, Neurobiol. Aging, 2009, 30, 1756–1776

    Article  PubMed  CAS  Google Scholar 

  17. Nizzari M., Thellung S., Corsaro A., Villa V., Pagano A., Porcile C., et al., Neurodegeneration in Alzheimer disease: role of amyloid precursor protein and presenilin 1 intracellular signaling, J. Toxicol., 2012, 2012, 1–13

    Google Scholar 

  18. Revett T.J., Baker G.B., Jhamandas J., Kar S., Glutamate system, amyloid β peptides and tau protein: functional interrelationships and relevance to Alzheimer disease pathology, J. Psychiatry Neurosci., 2013, 38, 6–23

    Article  PubMed  Google Scholar 

  19. Casas C., Sergeant N., Itier J.M., Blanchard V., Wirths O., van der Kolk N., et al., Massive CA1/2 neuronal loss with intraneuronal and N-terminal truncated Abeta42 accumulation in a novel Alzheimer transgenic model, Am. J. Pathol., 2004, 165, 1289–1300

    Article  PubMed  CAS  Google Scholar 

  20. Wirths O., Breyhan H., Schafer S., Roth C., Bayer T.A., Deficits in working memory and motor performance in the APP/PS1ki mouse model for Alzheimer’s disease, Neurobiol. Aging, 2008, 29, 891–901

    Article  PubMed  CAS  Google Scholar 

  21. Wirths O., Weis J., Szczygielski J., Multhaup G., Bayer T.A., Axonopathy in an APP/PS1 transgenic mouse model of Alzheimer’s disease, Acta Neuropathol., 2006, 111, 312–319

    Article  PubMed  CAS  Google Scholar 

  22. Takahashi H., Brasnjevic I., Rutten B.P., Van Der Kolk N., Perl D.P., Bouras C., et al., Hippocampal interneuron loss in an APP/PS1 double mutant mouse and in Alzheimer’s disease, Brain Struct. Funct., 2010, 214, 145–160

    Article  PubMed  CAS  Google Scholar 

  23. Borchardt T., Camakaris J., Cappai R., Masters C.L., Beyreuther K., Multhaup G., Copper inhibits beta-amyloid production and stimulates the non-amyloidogenic pathway of amyloid-precursorprotein secretion, Biochem. J., 1999, 344, 461–467

    Article  PubMed  CAS  Google Scholar 

  24. Schmitz C., Hof P.R., Design-based stereology in neuroscience, Neuroscience, 2005, 130, 813–831

    Article  PubMed  CAS  Google Scholar 

  25. Franklin K., Paxinos G., The mouse brain in stereotaxic coordinates, Academic Press, San Diego, 1997

    Google Scholar 

  26. Van de Berg W.D., Blokland A., Cuello A.C., Schmitz C., Vreuls W., Steinbusch H.W., et al., Perinatal asphyxia results in changes in presynaptic bouton number in striatum and cerebral cortex-a stereological and behavioral analysis, J. Chem. Neuroanat., 2000, 20, 71–82

    Article  PubMed  Google Scholar 

  27. Heinonen O., Soininen H., Sorvari H., Kosunen O. Paljarvi L., Koivisto E., et al., Loss of synaptophysin-like immunoreactivity in the hippocampal formation is an early phenomenon in Alzheimer’s disease, Neuroscience, 1995, 64, 375–385

    Article  PubMed  CAS  Google Scholar 

  28. Terry R.D., Masliah E., Salmon D.P., Butters N., DeTeresa R., Hill R., et al., Physical basis of cognitive alterations in Alzheimer’s disease: synapse loss is the major correlate of cognitive impairment, Ann. Neurol, 1991, 30, 572–580

    Article  PubMed  CAS  Google Scholar 

  29. Ingelsson M., Fukumoto H., Newell K.L., Growdon J.H., Hedley-Whyte E.T., Frosch M.P., et al., Early Aβ accumulation and progressive synaptic loss, gliosis, and tangle formation in AD brain, Neurology, 2004, 62, 925–931

    CAS  Google Scholar 

  30. Clare R., King V.G., Wirenfeldt M., Vinters H.V., 2010, Synapse loss in dementias, J. Neurosci. Res., 88, 2083–2090

    Article  PubMed  CAS  Google Scholar 

  31. Cotel M.C., Bayer T.A., Wirths O., Age-dependent loss of dentate gyrus granule cells in APP/PS1KI mice, Brain Res., 2008, 1222, 207–213

    Article  PubMed  CAS  Google Scholar 

  32. Breyhan H., Wirths O., Duan K., Marcello A., Rettig J., Bayer T.A., APP/PS1KI bigenic mice develop early synaptic deficits and hippocampus atrophy, Acta Neuropathol., 2009, 117, 677–685

    Article  PubMed  Google Scholar 

  33. Tomiyama T., Matsuyama S., Iso H., Umeda T., Takuma H., Ohnishi K., et al., A mouse model of amyloid β oligomers: their contribution to synaptic alteration, abnormal tau phosphorylation, glial activation, and neuronal loss in vivo, J. Neurosci., 2010, 30, 4845–4856

    Article  PubMed  CAS  Google Scholar 

  34. Sanchez-Varo R., Trujillo-Estrada L., Sanchez-Mejias E., Torres M., Baglietto-Vargas D., Moreno-Gonzalez I., et al., Abnormal accumulation of autophagic vesicles correlates with axonal and synaptic pathology in young Alzheimer’s mice hippocampus, Acta Neuropathol., 2012, 1–18

    Google Scholar 

  35. Irizarry M.C., Soriano F., McNamara M., Page K.J., Schenk D., Games D., et al., Abeta deposition is associated with neuropil changes, but not with overt neuronal loss in the human amyloid precursor protein V717F (PDAPP) transgenic mouse, J. Neurosci., 1997, 17, 7053–7059

    PubMed  CAS  Google Scholar 

  36. Calhoun M.E., Wiederhold K.H., Abramowski D., Phinney A.L., Probst A., Sturchler-Pierrat C., et al., Neuron loss in APP transgenic mice, Nature, 1998, 395, 755–756

    Article  PubMed  CAS  Google Scholar 

  37. Takeuchi A., Irizarry M.C., Duff K., Saido T.C., Hsiao Ashe K., Hasegawa M., et al., Age-related amyloid beta deposition in transgenic mice overexpressing both Alzheimer mutant presenilin 1 and amyloid beta precursor protein Swedish mutant is not associated with global neuronal loss, Am. J. Pathol., 2000, 157, 331–339

    Article  PubMed  CAS  Google Scholar 

  38. Dickson D.W., Building a more perfect beast: APP transgenic mice with neuronal loss, Am. J. Pathol., 2004, 164, 1143–1146

    Article  PubMed  Google Scholar 

  39. Howlett D.R., Bowler K., Soden P.E., Riddell D., Davis J.B., Richardson J.C., et al., Abeta deposition and related pathology in an APP x PS1 transgenic mouse model of Alzheimer’s disease, Histol. Histopathol., 2008, 23, 67–76

    PubMed  CAS  Google Scholar 

  40. Van Broeck B., Vanhoutte G., Pirici D., Van Dam D., Wils H., Cuijt I., et al., Intraneuronal amyloid beta and reduced brain volume in a novel APP T714I mouse model for Alzheimer’s disease, Neurobiol. Aging, 2008, 29, 241–252

    Article  PubMed  CAS  Google Scholar 

  41. Elder G.A., Gama Sosa M.A., De Gasperi R., Dickstein D.L., Hof P.R., Presenilin transgenic mice as models of Alzheimer’s disease, Brain Struct. Funct., 2010, 214, 127–143

    Article  PubMed  CAS  Google Scholar 

  42. Mukaetova-Ladinska E.B., Garcia-Siera F., Hurt J., Gertz H.J., Xuereb J.H., Hills R., et al., Staging of cytoskeletal and beta-amyloid changes in human isocortex reveals biphasic synaptic protein response during progression of Alzheimer’s disease, Am. J. Pathol., 2000, 157, 623–636

    Article  PubMed  CAS  Google Scholar 

  43. Counts S.E., Nadeem M., Lad S.P., Wuu J., Mufson E.J., Differential expression of synaptic proteins in the frontal and temporal cortex of elderly subjects with mild cognitive impairment, J. Neuropathol. Exp. Neurol., 2006, 65, 592–601

    Article  PubMed  CAS  Google Scholar 

  44. Bell K.F., Bennett D.A., Cuello A.C., Paradoxical upregulation of glutamatergic presynaptic boutons during mild cognitive impairment, J. Neurosci., 2007, 27, 10810–10817

    Article  PubMed  CAS  Google Scholar 

  45. Akram A., Christoffel D., Rocher A.B., Bouras C., Kovari E., Perl D.P., et al., Stereologic estimates of total spinophilin-immunoreactive spine number in area 9 and the CA1 field: relationship with the progression of Alzheimer’s disease, Neurobiol. Aging, 2008, 29, 1296–1307

    Article  PubMed  CAS  Google Scholar 

  46. Bronfman F.C., Moechars D., Van Leuven F., Acetylcholinesterasepositive fiber deafferentation and cell shrinkage in the septohippocampal pathway of aged amyloid precursor protein london mutant transgenic mice, Neurobiol. Dis., 2000, 7, 152–168

    Article  PubMed  CAS  Google Scholar 

  47. Briones T.L., Suh E., Jozsa L., Rogozinska M., Woods J., Wadowska M., Changes in number of synapses and mitochondria in presynaptic terminals in the dentate gyrus following cerebral ischemia and rehabilitation training, Brain Res., 2005, 1033, 51–57

    Article  PubMed  CAS  Google Scholar 

  48. DeKosky S.T., Scheff S.W., Styren S.D., Structural correlates of cognition in dementia: quantification and assessment of synapse change, Neurodegeneration, 1996, 5, 417–421

    Article  PubMed  CAS  Google Scholar 

  49. Seeger G., Gärtner U., Ueberham U., Rohn S., Arendt T., FAD-mutation of APP is associated with a loss of its synaptotrophic activity, Neurobiol. Dis., 2009, 35, 258–263

    Article  PubMed  CAS  Google Scholar 

  50. Dong H., Martin M.V., Chambers S., Csernansky J.G., Spatial relationship between synapse loss and β-amyloid deposition in Tg2576 mice, J. Comp. Neurol., 2006, 500, 311–321

    Article  CAS  Google Scholar 

  51. Hu L., Wong T.P., Cote S.L., Bell K.F., Cuello A.C., The impact of Abetaplaques on cortical cholinergic and non-cholinergic presynaptic boutons in alzheimer’s disease-like transgenic mice, Neuroscience, 2003, 121, 421–432

    Article  PubMed  CAS  Google Scholar 

  52. Savage M.J., Lin Y.G., Ciallella J.R., Flood D.G., Scott R.W., Activation of c-Jun N-terminal kinase and p38 in an Alzheimer’s disease model is associated with amyloid deposition, J. Neurosci., 2002, 22, 3376–3385

    PubMed  CAS  Google Scholar 

  53. Gruart A., Lopez-Ramos J.C., Munoz M.D., Delgado-Garcia J.M., Aged wild-type and APP, PS1, and APP + PS1 mice present similar deficits in associative learning and synaptic plasticity independent of amyloid load, Neurobiol. Dis., 2008, 30, 439–450

    Article  PubMed  CAS  Google Scholar 

  54. Koo E.H., Kopan R., Potential role of presenilin-regulated signaling pathways in sporadic neurodegeneration, Nat. Med., 2004, Suppl. 10, S26–33

    Article  CAS  Google Scholar 

  55. Morfini G., Pigino G., Beffert U., Busciglio J., Brady S.T., Fast axonal transport misregulation and Alzheimer’s disease, Neuromolecular Med., 2002, 2, 89–99

    Article  PubMed  CAS  Google Scholar 

  56. Gadadhar A., Marr R., Lazarov O., Presenilin-1 regulates neural progenitor cell differentiation in the adult brain, J. Neurosci., 2011, 31, 2615–2623

    Article  PubMed  CAS  Google Scholar 

  57. Lemmens M.A.M., Sierksma A.S.R., Rutten B.P.F., Dennissen F., Steinbusch H.W.M., Lucassen P.J., et al., Age-related changes of neuron numbers in the frontal cortex of a transgenic mouse model of Alzheimer’s disease, Brain Struct. Funct., 2011, 216, 227–237

    Article  PubMed  Google Scholar 

  58. van Tijn P., Kamphuis W., Marlatt M.W., Hol E.M., Lucassen P.J., Presenilin mouse and zebrafish models for dementia: focus on neurogenesis, Prog. Neurobiol., 2011, 93, 149–164

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bart P. F. Rutten.

Additional information

equal contributions

About this article

Cite this article

Brasnjevic, I., Lardenoije, R., Schmitz, C. et al. Region-specific neuron and synapse loss in the hippocampus of APPSL/PS1 knock-in mice. Translat.Neurosci. 4, 8–19 (2013). https://doi.org/10.2478/s13380-013-0111-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s13380-013-0111-8

Keywords

Navigation