Skip to main content
Log in

Homeostatic function of astrocytes: Ca2+ and Na+ signalling

  • Review Article
  • Published:
Translational Neuroscience

Abstract

The name astroglia unifies many non-excitable neural cells that act as primary homeostatic cells in the nervous system. Neuronal activity triggers multiple homeostatic responses of astroglia that include increase in metabolic activity and synthesis of neuronal preferred energy substrate lactate, clearance of neurotransmitters and buffering of extracellular K+ ions to name but a few. Many (if not all) of astroglial homeostatic responses are controlled by dynamic changes in the cytoplasmic concentration of two cations, Ca2+ and Na+. Intracellular concentration of these ions is tightly controlled by several transporters and can be rapidly affected by the activation of respective fluxes through ionic channels or ion exchangers. Here, we provide a comprehensive review of astroglial Ca2+ and Na+ signalling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AMPA:

α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid

[Ca2+]i :

cytoplasmic free Ca2+ concentration

[Ca2+]L :

intra-ER (or intraluminal) free Ca2+ concentration

CNS:

central nervous system

CRAC:

Ca2+-release activated Ca2+

ER:

endoplasmic reticulum

GABA:

γ-aminobutyric acid

InsP3R:

inositol 1,4,5 trisphosphate (InsP3)-gated Ca2+ channel/receptor

[Na+]i :

cytoplasmic Na+ concentration

NCX:

Na+/Ca2+ exchanger

NKA:

Na+/K+ ATPase

NMDA:

N-methyl D-aspartate

PLC:

phospholipase C

PMCA:

plasmalemmal Ca2+ ATPase

RyR:

ryanodine receptor

SERCA:

sarco(endoplasmic) reticulum Ca2+ ATPase

SLC:

solute carrier

TRP:

transient receptor potential

References

  1. Lenhossek M.v., Zur Kenntnis der Neuroglia des menschlichen Ruckenmarkes, Verh. Anat. Ges, 1891, 5, 193–221

    Google Scholar 

  2. Lenhossek M.v., Der feinere Bau des Nervensystems im Lichte neuester Forschung, Fischer’s Medicinische Buchhandlung H. Kornfield, Berlin, 2nd Ed. 1895

    Google Scholar 

  3. Kimelberg H.K., Functions of mature mammalian astrocytes: a current view, Neuroscientist, 2010, 16, 79–106

    Article  PubMed  CAS  Google Scholar 

  4. Kimelberg H.K., Nedergaard M., Functions of astrocytes and their potential as therapeutic targets, Neurotherapeutics, 2010, 7, 338–353

    Article  PubMed  CAS  Google Scholar 

  5. Nedergaard M., Ransom B., Goldman S.A., New roles for astrocytes: redefining the functional architecture of the brain, Trends Neurosci., 2003, 26, 523–530

    Article  PubMed  CAS  Google Scholar 

  6. Oberheim N.A., Goldman S.A., Nedergaard M., Heterogeneity of astrocytic form and function, Methods Mol. Biol., 2012, 814, 23–45

    Article  PubMed  CAS  Google Scholar 

  7. Oberheim N.A., Takano T., Han X., He W., Lin J.H., Wang F., et al., Uniquely hominid features of adult human astrocytes, J. Neurosci., 2009, 29, 3276–3287

    Article  PubMed  CAS  Google Scholar 

  8. Oberheim N.A., Wang X., Goldman S., Nedergaard M., Astrocytic complexity distinguishes the human brain, Trends Neurosci., 2006, 29, 547–553

    Article  PubMed  CAS  Google Scholar 

  9. Verkhratsky A., Physiology of neuronal-glial networking, Neurochem. Int., 2010, 57, 332–343

    Article  PubMed  CAS  Google Scholar 

  10. Verkhratsky A., Parpura V., Rodriguez J.J., Where the thoughts dwell: the physiology of neuronal-glial “diffuse neural net”, Brain Res. Rev., 2011, 66, 133–151

    Article  PubMed  Google Scholar 

  11. Verkhratsky A., Butt A., Glial Neurobiology. A textbook, John Wiley & Sons, Chichester, 2007

    Book  Google Scholar 

  12. Verkhratsky A., Toescu E.C., Neuronal-glial networks as substrate for CNS integration, J. Cell. Mol. Med., 2006, 10, 826–836

    Article  PubMed  CAS  Google Scholar 

  13. Verkhratsky A., Rodriguez J.J., Parpura V., Calcium signalling in astroglia, Mol. Cell. Endocrinol., 2012, 353, 45–56

    Article  PubMed  CAS  Google Scholar 

  14. Parpura V., Verkhratsky A., Neuroglia at the crossroads of homoeostasis, metabolism and signalling: evolution of the concept, ASN Neuro, 2012, 4

  15. Parpura V., Heneka M.T., Montana V., Oliet S.H., Schousboe A., Haydon P.G., et al., Glial cells in (patho)physiology, J. Neurochem., 2012, 121, 4–27

    Article  PubMed  CAS  Google Scholar 

  16. Parpura V., Verkhratsky A., The astrocyte excitability brief: From receptors to gliotransmission, Neurochem. Int., 2012, 61, 610–621

    Article  PubMed  CAS  Google Scholar 

  17. Hodgkin A.L., Huxley A.F., Currents carried by sodium and potassium ions through the membrane of the giant axon of Loligo, J. Physiol., 1952, 116, 449–472

    PubMed  CAS  Google Scholar 

  18. Hodgkin A.L., Huxley A.F., A quantitative description of membrane current and its application to conduction and excitation in nerve, J. Physiol., 1952, 117, 500–544

    PubMed  CAS  Google Scholar 

  19. Katz B., Miledi R., Propagation of electric activity in motor nerve terminals, Proc. R. Soc. Lond. B. Biol. Sci., 1965, 161, 453–482

    Article  PubMed  CAS  Google Scholar 

  20. Katz B., Miledi R., The effect of calcium on acetylcholine release from motor nerve terminals, Proc. R. Soc. Lond. B Biol. Sci., 1965, 161, 496–503

    Article  PubMed  CAS  Google Scholar 

  21. Augustine G.J., How does calcium trigger neurotransmitter release?, Curr. Opin. Neurobiol., 2001, 11, 320–326

    Article  PubMed  CAS  Google Scholar 

  22. Barclay J.W., Morgan A., Burgoyne R.D., Calcium-dependent regulation of exocytosis, Cell Calcium, 2005, 38, 343–353

    Article  PubMed  CAS  Google Scholar 

  23. Dermietzel R., Gap junction wiring: a ‘new’ principle in cell-to-cell communication in the nervous system?, Brain Res. Rev., 1998, 26, 176–183

    Article  PubMed  CAS  Google Scholar 

  24. Dermietzel R., Spray D.C., Gap junctions in the brain: where, what type, how many and why?, Trends Neurosci., 1993, 16, 186–192

    Article  PubMed  CAS  Google Scholar 

  25. Nagy J.I., Dudek F.E., Rash J.E., Update on connexins and gap junctions in neurons and glia in the mammalian nervous system, Brain Res. Rev., 2004, 47, 191–215

    Article  PubMed  CAS  Google Scholar 

  26. Theis M., Sohl G., Eiberger J., Willecke K., Emerging complexities in identity and function of glial connexins, Trends Neurosci., 2005, 28, 188–195

    Article  PubMed  CAS  Google Scholar 

  27. Dermietzel R., Gao Y., Scemes E., Vieira D., Urban M., Kremer M., et al., Connexin43 null mice reveal that astrocytes express multiple connexins, Brain Res. Rev., 2000, 32, 45–56

    Article  PubMed  CAS  Google Scholar 

  28. Guthrie P.B., Segal M., Kater S.B., Independent regulation of calcium revealed by imaging dendritic spines, Nature, 1991, 354, 76–80

    Article  PubMed  CAS  Google Scholar 

  29. Stout C.E., Costantin J.L., Naus C.C., Charles A.C., Intercellular calcium signaling in astrocytes via ATP release through connexin hemichannels, J. Biol. Chem., 2002, 277, 10482–10488

    Article  PubMed  CAS  Google Scholar 

  30. Cotrina M.L., Lin J.H., Lopez-Garcia J.C., Naus C.C., Nedergaard M., ATP-mediated glia signaling, J. Neurosci., 2000, 20, 2835–2844

    PubMed  CAS  Google Scholar 

  31. Arcuino G., Lin J.H., Takano T., Liu C., Jiang L., Gao Q., et al., Intercellular calcium signaling mediated by point-source burst release of ATP, Proc. Natl. Acad. Sci. USA, 2002, 99, 9840–9845

    Article  PubMed  CAS  Google Scholar 

  32. Di Castro M.A., Chuquet J., Liaudet N., Bhaukaurally K., Santello M., Bouvier D., et al., Local Ca2+ detection and modulation of synaptic release by astrocytes, Nat. Neurosci., 2011, 14, 1276–1284

    Article  PubMed  CAS  Google Scholar 

  33. Panatier A., Vallee J., Haber M., Murai K.K., Lacaille J.C., Robitaille R., Astrocytes are endogenous regulators of basal transmission at central synapses, Cell, 2011, 146, 785–798

    Article  PubMed  CAS  Google Scholar 

  34. Shigetomi E., Tong X., Kwan K.Y., Corey D.P., Khakh B.S., TRPA1 channels regulate astrocyte resting calcium and inhibitory synapse efficacy through GAT-3, Nat. Neurosci., 2011, 15, 70–80

    Article  PubMed  CAS  Google Scholar 

  35. Case R.M., Eisner D., Gurney A., Jones O., Muallem S., Verkhratsky A., Evolution of calcium homeostasis: from birth of the first cell to an omnipresent signalling system, Cell Calcium, 2007, 42, 345–350

    Article  PubMed  CAS  Google Scholar 

  36. Petersen O.H., Michalak M., Verkhratsky A., Calcium signalling: past, present and future, Cell Calcium, 2005, 38, 161–169

    Article  CAS  Google Scholar 

  37. Solovyova N., Verkhratsky A., Neuronal endoplasmic reticulum acts as a single functional Ca2+ store shared by ryanodine and inositol-1,4,5-trisphosphate receptors as revealed by intra-ER [Ca2+]_recordings in single rat sensory neurones, Pflugers Arch., 2003, 446, 447–454

    Article  PubMed  CAS  Google Scholar 

  38. Petersen O.H., Verkhratsky A., Endoplasmic reticulum calcium tunnels integrate signalling in polarised cells, Cell Calcium, 2007, 42, 373–378

    Article  PubMed  CAS  Google Scholar 

  39. Altschuld R.A., Hohl C.M., Castillo L.C., Garleb A.A., Starling R.C., Brierley G.P., Cyclosporin inhibits mitochondrial calcium efflux in isolated adult rat ventricular cardiomyocytes, Am. J. Physiol., 1992, 262, H1699–1704

    PubMed  CAS  Google Scholar 

  40. Nicholls D.G., Mitochondria and calcium signaling, Cell Calcium, 2005, 38, 311–317

    Article  PubMed  CAS  Google Scholar 

  41. Berridge M.J., Bootman M.D., Roderick H.L., Calcium signalling: dynamics, homeostasis and remodelling, Nat. Rev. Mol. Cell. Biol., 2003, 4, 517–529

    Article  PubMed  CAS  Google Scholar 

  42. Berridge M.J., Lipp P., Bootman M.D., The versatility and universality of calcium signalling, Nat. Rev. Mol. Cell. Biol., 2000, 1, 11–21

    Article  PubMed  CAS  Google Scholar 

  43. Burdakov D., Petersen O.H., Verkhratsky A., Intraluminal calcium as a primary regulator of endoplasmic reticulum function, Cell Calcium, 2005, 38, 303–310

    Article  PubMed  CAS  Google Scholar 

  44. Guerrero-Hernandez A., Dagnino-Acosta A., Verkhratsky A., An intelligent sarco-endoplasmic reticulum Ca2+ store: release and leak channels have differential access to a concealed Ca2+ pool, Cell Calcium, 2010, 48, 143–149

    Article  PubMed  CAS  Google Scholar 

  45. Kopach O., Kruglikov I., Pivneva T., Voitenko N., Verkhratsky A., Fedirko N., Mitochondria adjust Ca(2+) signaling regime to a pattern of stimulation in salivary acinar cells, Biochim. Biophys. Acta, 2011, 1813, 1740–1748

    Article  PubMed  CAS  Google Scholar 

  46. Parekh A.B., Mitochondrial regulation of store-operated CRAC channels, Cell Calcium, 2008, 44, 6–13

    Article  PubMed  CAS  Google Scholar 

  47. Charles A.C., Dirksen E.R., Merrill J.E., Sanderson M.J., Mechanisms of intercellular calcium signaling in glial cells studied with dantrolene and thapsigargin, Glia, 1993, 7, 134–145

    Article  PubMed  CAS  Google Scholar 

  48. Charles A.C., Merrill J.E., Dirksen E.R., Sanderson M.J., Intercellular signaling in glial cells: calcium waves and oscillations in response to mechanical stimulation and glutamate, Neuron, 1991, 6, 983–992

    Article  PubMed  CAS  Google Scholar 

  49. Cornell Bell A.H., Finkbeiner S.M., Cooper M.S., Smith S.J., Glutamate induces calcium waves in cultured astrocytes: long-range glial signaling, Science, 1990, 247, 470–473

    Article  PubMed  CAS  Google Scholar 

  50. Finkbeiner S.M., Glial calcium, Glia, 1993, 9, 83–104

    Article  PubMed  CAS  Google Scholar 

  51. Verkhratsky A., Kettenmann H., Calcium signalling in glial cells, Trends Neurosci., 1996, 19, 346–352

    Article  PubMed  CAS  Google Scholar 

  52. Verkhratsky A., Orkand R.K., Kettenmann H., Glial calcium: homeostasis and signaling function, Physiol. Rev., 1998, 78, 99–141

    PubMed  CAS  Google Scholar 

  53. Kirischuk S., Moller T., Voitenko N., Kettenmann H., Verkhratsky A., ATP-induced cytoplasmic calcium mobilization in Bergmann glial cells, J. Neurosci., 1995, 15, 7861–7871

    PubMed  CAS  Google Scholar 

  54. Kirischuk S., Tuschick S., Verkhratsky A., Kettenmann H., Calcium signalling in mouse Bergmann glial cells mediated by a1-adrenoreceptors and H1 histamine receptors, Eur. J. Neurosci., 1996, 8, 1198–1208

    Article  PubMed  CAS  Google Scholar 

  55. Kirischuk S., Kirchhoff F., Matyash V., Kettenmann H., Verkhratsky A., Glutamate-triggered calcium signalling in mouse bergmann glial cells in situ: role of inositol-1,4,5-trisphosphate-mediated intracellular calcium release, Neuroscience, 1999, 92, 1051–1059

    Article  PubMed  CAS  Google Scholar 

  56. Porter J.T., McCarthy K.D., Adenosine receptors modulate [Ca2+]i in hippocampal astrocytes in situ, J. Neurochem., 1995, 65, 1515–1523

    Article  PubMed  CAS  Google Scholar 

  57. Zorec R., Araque A., Carmignoto G., Haydon P.G., Verkhratsky A., Parpura V., Astroglial excitability and gliotransmission: an appraisal of Ca2+ as a signalling route, ASN Neuro, 2012, 4, pii: e00080

    Article  PubMed  CAS  Google Scholar 

  58. Verkhratsky A., Physiology and pathophysiology of the calcium store in the endoplasmic reticulum of neurons, Physiol. Rev., 2005, 85, 201–279

    Article  PubMed  CAS  Google Scholar 

  59. Michalak M., Robert Parker J.M., Opas M., Ca2+ signaling and calcium binding chaperones of the endoplasmic reticulum, Cell Calcium, 2002, 32, 269–278

    Article  PubMed  CAS  Google Scholar 

  60. Baumann O., Walz B., Endoplasmic reticulum of animal cells and its organization into structural and functional domains, Int. Rev. Cytol., 2001, 205, 149–214

    Article  PubMed  CAS  Google Scholar 

  61. Berridge M.J., The endoplasmic reticulum: a multifunctional signaling organelle, Cell Calcium, 2002, 32, 235–249

    Article  PubMed  CAS  Google Scholar 

  62. Alonso M.T., Barrero M.J., Michelena P., Carnicero E., Cuchillo I., Garcia A.G., et al., Ca2+-induced Ca2+ release in chromaffin cells seen from inside the ER with targeted aequorin, J. Cell Biol., 1999, 144, 241–254

    Article  PubMed  CAS  Google Scholar 

  63. Mogami H., Tepikin A.V., Petersen O.H., Termination of cytosolic Ca2+ signals: Ca2+ reuptake into intracellular stores is regulated by the free Ca2+ concentration in the store lumen, EMBO J., 1998, 17, 435–442

    Article  PubMed  CAS  Google Scholar 

  64. Solovyova N., Verkhratsky A., Monitoring of free calcium in the neuronal endoplasmic reticulum: an overview of modern approaches, J. Neurosci. Methods, 2002, 122, 1–12

    Article  PubMed  CAS  Google Scholar 

  65. Solovyova N., Veselovsky N., Toescu E.C., Verkhratsky A., Ca2+ dynamics in the lumen of the endoplasmic reticulum in sensory neurons: direct visualization of Ca2+-induced Ca2+ release triggered by physiological Ca2+ entry, EMBO J., 2002, 21, 622–630

    Article  PubMed  CAS  Google Scholar 

  66. Verkhratsky A., Petersen O.H., The endoplasmic reticulum as an integrating signalling organelle: from neuronal signalling to neuronal death, Eur. J. Pharmacol., 2002, 447, 141–154

    Article  PubMed  CAS  Google Scholar 

  67. Agulhon C., Petravicz J., McMullen A.B., Sweger E.J., Minton S.K., Taves S.R., et al., What is the role of astrocyte calcium in neurophysiology?, Neuron, 2008, 59, 932–946

    Article  PubMed  CAS  Google Scholar 

  68. Matyash M., Matyash V., Nolte C., Sorrentino V., Kettenmann H., Requirement of functional ryanodine receptor type 3 for astrocyte migration, FASEB J., 2002, 16, 84–86

    PubMed  CAS  Google Scholar 

  69. Verkhratsky A., Solovyova N., Toescu E.C., Calcium excitability of glial cells, In: Volterra A., Haydon P., Magistretti P. (Eds.), Glia in synaptic transmission, OUP, Oxford, 2002

    Google Scholar 

  70. Beck A., Nieden R.Z., Schneider H.P., Deitmer J.W., Calcium release from intracellular stores in rodent astrocytes and neurons in situ, Cell Calcium, 2004, 35, 47–58

    Article  PubMed  CAS  Google Scholar 

  71. Hua X., Malarkey E.B., Sunjara V., Rosenwald S.E., Li W.H., Parpura V., Ca2+-dependent glutamate release involves two classes of endoplasmic reticulum Ca2+ stores in astrocytes, J. Neurosci. Res., 2004, 76, 86–97

    Article  PubMed  CAS  Google Scholar 

  72. Giaume C., Venance L., Intercellular calcium signaling and gap junctional communication in astrocytes, Glia, 1998, 24, 50–64

    Article  PubMed  CAS  Google Scholar 

  73. Scemes E., Giaume C., Astrocyte calcium waves: what they are and what they do, Glia, 2006, 54, 716–725

    Article  PubMed  Google Scholar 

  74. Verderio C., Bruzzone S., Zocchi E., Fedele E., Schenk U., De Flora A., et al., Evidence of a role for cyclic ADP-ribose in calcium signalling and neurotransmitter release in cultured astrocytes, J. Neurochem., 2001, 78, 646–657

    Article  PubMed  CAS  Google Scholar 

  75. Bruzzone S., Verderio C., Schenk U., Fedele E., Zocchi E., Matteoli M., et al., Glutamate-mediated overexpression of CD38 in astrocytes cultured with neurones, J. Neurochem., 2004, 89, 264–272

    Article  PubMed  CAS  Google Scholar 

  76. Heidemann A.C., Schipke C.G., Kettenmann H., Extracellular application of nicotinic acid adenine dinucleotide phosphate induces Ca2+ signaling in astrocytes in situ, J. Biol. Chem., 2005, 280, 35630–35640

    Article  PubMed  CAS  Google Scholar 

  77. Singaravelu K., Deitmer J.W., Calcium mobilization by nicotinic acid adenine dinucleotide phosphate (NAADP) in rat astrocytes, Cell Calcium, 2006, 39, 143–153

    Article  PubMed  CAS  Google Scholar 

  78. Barcelo-Torns M., Lewis A.M., Gubern A., Barneda D., Bloor-Young D., Picatoste F., et al., NAADP mediates ATP-induced Ca2+ signals in astrocytes, FEBS Lett., 2011, 585, 2300–2306

    Article  PubMed  CAS  Google Scholar 

  79. Malarkey E.B., Parpura V., Mechanisms of transmitter release from astrocytes, In: Parpura V. Haydon P.G. (Eds.), Astrocytes in (patho) physiology of the nervous system, Springer, New York, 2009

    Google Scholar 

  80. Parpura V., Grubisic V., Verkhratsky A., Ca2+ sources for the exocytotic release of glutamate from astrocytes, Biochim. Biophys. Acta, 2011, 1813, 984–991

    Article  PubMed  CAS  Google Scholar 

  81. D’Ascenzo M., Fellin T., Terunuma M., Revilla-Sanchez R., Meaney D.F., Auberson Y.P., et al., mGluR5 stimulates gliotransmission in the nucleus accumbens, Proc. Natl. Acad. Sci. USA, 2007, 104, 1995–2000

    Article  PubMed  CAS  Google Scholar 

  82. Fellin T., Pascual O., Gobbo S., Pozzan T., Haydon P.G., Carmignoto G., Neuronal synchrony mediated by astrocytic glutamate through activation of extrasynaptic NMDA receptors, Neuron, 2004, 43, 729–743

    Article  PubMed  CAS  Google Scholar 

  83. Shigetomi E., Bowser D.N., Sofroniew M.V., Khakh B.S., Two forms of astrocyte calcium excitability have distinct effects on NMDA receptor-mediated slow inward currents in pyramidal neurons, J. Neurosci., 2008, 28, 6659–6663

    Article  PubMed  CAS  Google Scholar 

  84. Putney J.W.Jr., A model for receptor-regulated calcium entry, Cell Calcium, 1986, 7, 1–12

    Article  PubMed  CAS  Google Scholar 

  85. Putney J.W.Jr., Capacitative calcium entry revisited, Cell Calcium, 1990, 11, 611–624

    Article  PubMed  CAS  Google Scholar 

  86. Parekh A.B., Putney J.W.Jr., Store-operated calcium channels, Physiol. Rev., 2005, 85, 757–810

    Article  PubMed  CAS  Google Scholar 

  87. Feske S., Gwack Y., Prakriya M., Srikanth S., Puppel S.H., Tanasa B., et al., A mutation in Orai1 causes immune deficiency by abrogating CRAC channel function, Nature, 2006, 441, 179–185

    Article  PubMed  CAS  Google Scholar 

  88. Putney J.W.Jr., Recent breakthroughs in the molecular mechanism of capacitative calcium entry (with thoughts on how we got here), Cell Calcium, 2007, 42, 103–110

    Article  PubMed  CAS  Google Scholar 

  89. Smyth J.T., Dehaven W.I., Jones B.F., Mercer J.C., Trebak M., Vazquez G., et al., Emerging perspectives in store-operated Ca2+ entry: roles of Orai, Stim and TRP, Biochim. Biophys. Acta, 2006, 1763, 1147–1160

    Article  CAS  Google Scholar 

  90. Pivneva T., Haas B., Reyes-Haro D., Laube G., Veh R.W., Nolte C., et al., Store-operated Ca2+ entry in astrocytes: different spatial arrangement of endoplasmic reticulum explains functional diversity in vitro and in situ, Cell Calcium, 2008, 43, 591–601

    Article  PubMed  CAS  Google Scholar 

  91. Tuschick S., Kirischuk S., Kirchhoff F., Liefeldt L., Paul M., Verkhratsky A., et al., Bergmann glial cells in situ express endothelinB receptors linked to cytoplasmic calcium signals, Cell Calcium, 1997, 21, 409–419

    Article  PubMed  CAS  Google Scholar 

  92. Golovina V.A., Visualization of localized store-operated calcium entry in mouse astrocytes. Close proximity to the endoplasmic reticulum, J. Physiol., 2005, 564, 737–749

    Article  PubMed  CAS  Google Scholar 

  93. Grimaldi M., Maratos M., Verma A., Transient receptor potential channel activation causes a novel form of [Ca2+]I oscillations and is not involved in capacitative Ca2+ entry in glial cells, J. Neurosci., 2003, 23, 4737–4745

    PubMed  CAS  Google Scholar 

  94. Pizzo P., Burgo A., Pozzan T., Fasolato C., Role of capacitative calcium entry on glutamate-induced calcium influx in type-I rat cortical astrocytes, J. Neurochem., 2001, 79, 98–109

    Article  PubMed  CAS  Google Scholar 

  95. Malarkey E.B., Ni Y., Parpura V., Ca2+ entry through TRPC1 channels contributes to intracellular Ca2+ dynamics and consequent glutamate release from rat astrocytes, Glia, 2008, 56, 821–835

    Article  PubMed  Google Scholar 

  96. Moreno C., Sampieri A., Vivas O., Pena-Segura C., Vaca L., STIM1 and Orai1 mediate thrombin-induced Ca(2+) influx in rat cortical astrocytes, Cell Calcium, 2012, in press, dx.doi.org/10.1016/j.ceca.2012.1008.1004

  97. Lalo U., Pankratov Y., Parpura V., Verkhratsky A., Ionotropic receptors in neuronal-astroglial signalling: What is the role of „excitable“ molecules in non-excitable cells, Biochim. Biophys. Acta, 2011, 1813, 992–1002

    Article  PubMed  CAS  Google Scholar 

  98. Verkhratsky A., Steinhauser C., Ion channels in glial cells, Brain Res. Rev., 2000, 32, 380–412

    Article  PubMed  CAS  Google Scholar 

  99. Verkhratsky A., Krishtal O.A., Burnstock G., Purinoceptors on neuroglia, Mol. Neurobiol., 2009, 39, 190–208

    Article  PubMed  CAS  Google Scholar 

  100. Muller T., Moller T., Berger T., Schnitzer J., Kettenmann H., Calcium entry through kainate receptors and resulting potassium-channel blockade in Bergmann glial cells, Science, 1992, 256, 1563–1566

    Article  PubMed  CAS  Google Scholar 

  101. Seifert G., Steinhauser C., Ionotropic glutamate receptors in astrocytes, Prog. Brain Res., 2001, 132, 287–299

    Article  PubMed  CAS  Google Scholar 

  102. Lalo U., Palygin O., North R.A., Verkhratsky A., Pankratov Y., Agedependent remodelling of ionotropic signalling in cortical astroglia, Aging Cell, 2011, 10, 392–402

    Article  PubMed  CAS  Google Scholar 

  103. Lalo U., Pankratov Y., Kirchhoff F., North R.A., Verkhratsky A., NMDA receptors mediate neuron-to-glia signaling in mouse cortical astrocytes, J. Neurosci., 2006, 26, 2673–2683

    Article  PubMed  CAS  Google Scholar 

  104. Verkhratsky A., Kirchhoff F., NMDA receptors in glia, Neuroscientist, 2007, 13, 28–37

    Article  PubMed  CAS  Google Scholar 

  105. Oliveira J.F., Riedel T., Leichsenring A., Heine C., Franke H., Krugel U., et al., Rodent cortical astroglia express in situ functional P2X7 receptors sensing pathologically high ATP concentrations, Cereb. Cortex, 2011, 21, 806–820

    Article  PubMed  Google Scholar 

  106. Palygin O., Lalo U., Verkhratsky A., Pankratov Y., Ionotropic NMDA and P2X1/5 receptors mediate synaptically induced Ca2+ signalling in cortical astrocytes, Cell Calcium, 2010, 48, 225–231

    Article  PubMed  CAS  Google Scholar 

  107. Lalo U., Pankratov Y., Wichert S.P., Rossner M.J., North R.A., Kirchhoff F., et al., P2X1 and P2X5 subunits form the functional P2X receptor in mouse cortical astrocytes, J. Neurosci., 2008, 28, 5473–5480

    Article  PubMed  CAS  Google Scholar 

  108. Franke H., Verkhratsky A., Burnstock G., Illes P., Pathophysiology of astroglial purinergic signalling, Purinergic Signal., 2012, 8, 629–657

    Article  PubMed  CAS  Google Scholar 

  109. Tai C., Zhu S., Zhou N., TRPA1: the central molecule for chemical sensing in pain pathway?, J. Neurosci., 2008, 28, 1019–1021

    Article  PubMed  CAS  Google Scholar 

  110. McNamara C.R., Mandel-Brehm J., Bautista D.M., Siemens J., Deranian K.L., Zhao M., et al., TRPA1 mediates formalin-induced pain, Proc. Natl. Acad. Sci. USA, 2007, 104, 13525–13530

    Article  PubMed  CAS  Google Scholar 

  111. McMahon S.B., Wood J.N., Increasingly irritable and close to tears: TRPA1 in inflammatory pain, Cell, 2006, 124, 1123–1125

    Article  PubMed  CAS  Google Scholar 

  112. Sawada Y., Hosokawa H., Hori A., Matsumura K., Kobayashi S., Cold sensitivity of recombinant TRPA1 channels, Brain Res., 2007, 1160, 39–46

    Article  PubMed  CAS  Google Scholar 

  113. Gracheva E.O., Ingolia N.T., Kelly Y.M., Cordero-Morales J.F., Hollopeter G., Chesler A.T., et al., Molecular basis of infrared detection by snakes, Nature, 2010, 464, 1006–1011

    Article  PubMed  CAS  Google Scholar 

  114. Rose C.R., Ransom B.R., Intracellular sodium homeostasis in rat hippocampal astrocytes, J. Physiol., 1996, 491, 291–305

    PubMed  CAS  Google Scholar 

  115. Reyes R.C., Verkhratsky A., Parpura V., Plasmalemmal Na+/Ca2+ exchanger modulates Ca2+-dependent exocytotic release of glutamate from rat cortical astrocytes, ASN Neuro, 2012, 4, e00075

    Article  PubMed  CAS  Google Scholar 

  116. Unichenko P., Myakhar O., Kirischuk S., Intracellular Na+ concentration influences short-term plasticity of glutamate transporter-mediated currents in neocortical astrocytes, Glia, 2012, 60, 605–614

    Article  PubMed  Google Scholar 

  117. Kirischuk S., Parpura V., Verkhratsky A., Sodium dynamics: another key to astroglial excitability?, Trends Neurosci, 2012, 35, 497–506

    Article  PubMed  CAS  Google Scholar 

  118. Kiedrowski L., Wroblewski J.T., Costa E., Intracellular sodium concentration in cultured cerebellar granule cells challenged with glutamate, Mol. Pharmacol., 1994, 45, 1050–1054

    PubMed  CAS  Google Scholar 

  119. Knopfel T., Guatteo E., Bernardi G., Mercuri N.B., Hyperpolarization induces a rise in intracellular sodium concentration in dopamine cells of the substantia nigra pars compacta, Eur. J. Neurosci., 1998, 10, 1926–1929

    Article  PubMed  CAS  Google Scholar 

  120. Pisani A., Calabresi P., Tozzi A., Bernardi G., Knopfel T., Early sodium elevations induced by combined oxygen and glucose deprivation in pyramidal cortical neurons, Eur. J. Neurosci., 1998, 10, 3572–3574

    Article  PubMed  CAS  Google Scholar 

  121. Kimelberg H.K., Pang S., Treble D.H., Excitatory amino acidstimulated uptake of 22Na+ in primary astrocyte cultures, J. Neurosci., 1989, 9, 1141–1149

    PubMed  CAS  Google Scholar 

  122. Bernardinelli Y., Magistretti P.J., Chatton J.Y., Astrocytes generate Na+-mediated metabolic waves, Proc. Natl. Acad. Sci. USA, 2004, 101, 14937–14942

    Article  PubMed  CAS  Google Scholar 

  123. Rose C.R., Ransom B.R., Gap junctions equalize intracellular Na+ concentration in astrocytes, Glia, 1997, 20, 299–307

    Article  PubMed  CAS  Google Scholar 

  124. Kirischuk S., Kettenmann H., Verkhratsky A., Na+/Ca2+ exchanger modulates kainate-triggered Ca2+ signaling in Bergmann glial cells in situ, FASEB J, 1997, 11, 566–572

    PubMed  CAS  Google Scholar 

  125. Kirischuk S., Kettenmann H., Verkhratsky A., Membrane currents and cytoplasmic sodium transients generated by glutamate transport in Bergmann glial cells, Pflugers Arch., 2007, 454, 245–252

    Article  PubMed  CAS  Google Scholar 

  126. Langer J., Stephan J., Theis M., Rose C.R., Gap junctions mediate intercellular spread of sodium between hippocampal astrocytes in situ, Glia, 2012, 60, 239–252

    Article  PubMed  Google Scholar 

  127. Bennay M., Langer J., Meier S.D., Kafitz K.W., Rose C.R., Sodium signals in cerebellar Purkinje neurons and Bergmann glial cells evoked by glutamatergic synaptic transmission, Glia, 2008, 56, 1138–1149

    Article  PubMed  Google Scholar 

  128. Langer J., Rose C.R., Synaptically induced sodium signals in hippocampal astrocytes in situ, J. Physiol., 2009, 587, 5859–5877

    Article  PubMed  CAS  Google Scholar 

  129. Shimizu H., Watanabe E., Hiyama T.Y., Nagakura A., Fujikawa A., Okado H., et al., Glial Nax channels control lactate signaling to neurons for brain [Na+] sensing, Neuron, 2007, 54, 59–72

    Article  PubMed  CAS  Google Scholar 

  130. Hediger M.A., Romero M.F., Peng J.B., Rolfs A., Takanaga H., Bruford E.A., The ABCs of solute carriers: physiological, pathological and therapeutic implications of human membrane transport proteinsIntroduction, Pflugers Arch., 2004, 447, 465–468

    Article  PubMed  CAS  Google Scholar 

  131. Ren Q., Chen K., Paulsen I.T., TransportDB: a comprehensive database resource for cytoplasmic membrane transport systems and outer membrane channels, Nucleic Acids Res., 2007, 35, D274–D279

    Article  PubMed  CAS  Google Scholar 

  132. Lytton J., Na+/Ca2+ exchangers: three mammalian gene families control Ca2+ transport, Biochem. J., 2007, 406, 365–382

    Article  PubMed  CAS  Google Scholar 

  133. Minelli A., Castaldo P., Gobbi P., Salucci S., Magi S., Amoroso S., Cellular and subcellular localization of Na+-Ca2+ exchanger protein isoforms, NCX1, NCX2, and NCX3 in cerebral cortex and hippocampus of adult rat, Cell Calcium, 2007, 41, 221–234

    Article  PubMed  CAS  Google Scholar 

  134. Paluzzi S., Alloisio S., Zappettini S., Milanese M., Raiteri L., Nobile M., et al., Adult astroglia is competent for Na+/Ca2+ exchanger-operated exocytotic glutamate release triggered by mild depolarization, J. Neurochem., 2007, 103, 1196–1207

    Article  PubMed  CAS  Google Scholar 

  135. Rojas H., Colina C., Ramos M., Benaim G., Jaffe E.H., Caputo C., et al., Na+ entry via glutamate transporter activates the reverse Na+/Ca2+ exchange and triggers Cai 2+-induced Ca2+ release in rat cerebellar Type-1 astrocytes, J. Neurochem., 2007, 100, 1188–1202

    Article  PubMed  CAS  Google Scholar 

  136. Danbolt N.C., Glutamate uptake, Progr. Neurobiol., 2001, 65, 1–105

    Article  CAS  Google Scholar 

  137. Hertz L., Zielke H.R., Astrocytic control of glutamatergic activity: astrocytes as stars of the show, Trends Neurosci., 2004, 27, 735–743

    Article  PubMed  CAS  Google Scholar 

  138. Olabarria M., Noristani H.N., Verkhratsky A., Rodriguez J.J., Agedependent decrease in glutamine synthetase expression in the hippocampal astroglia of the triple transgenic Alzheimer’s disease mouse model: mechanism for deficient glutamatergic transmission?, Mol. Neurodegener., 2011, 6, 55

    Article  PubMed  CAS  Google Scholar 

  139. Attwell D., Barbour B., Szatkowski M., Nonvesicular release of neurotransmitter, Neuron, 1993, 11, 401–407

    Article  PubMed  CAS  Google Scholar 

  140. Palty R., Silverman W.F., Hershfinkel M., Caporale T., Sensi S.L., Parnis J., et al., NCLX is an essential component of mitochondrial Na+/Ca2+ exchange, Proc. Natl. Acad Sci. USA, 2010, 107, 436–441

    Article  PubMed  CAS  Google Scholar 

  141. Mackenzie B., Erickson J.D., Sodium-coupled neutral amino acid (System N/A) transporters of the SLC38 gene family, Pflugers Arch., 2004, 447, 784–795

    Article  PubMed  CAS  Google Scholar 

  142. Ortinski P.I., Dong J., Mungenast A., Yue C., Takano H., Watson D.J., et al., Selective induction of astrocytic gliosis generates deficits in neuronal inhibition, Nat. Neurosci., 2010, 13, 584–591

    Article  PubMed  CAS  Google Scholar 

  143. Benz B., Grima G., Do K.Q., Glutamate-induced homocysteic acid release from astrocytes: possible implication in glia-neuron signaling, Neuroscience, 2004, 124, 377–386

    Article  PubMed  CAS  Google Scholar 

  144. Belanger M., Allaman I., Magistretti P.J., Brain energy metabolism: focus on astrocyte-neuron metabolic cooperation, Cell Metab., 2011, 14, 724–738

    Article  PubMed  CAS  Google Scholar 

  145. Pellerin L., Magistretti P.J., Sweet sixteen for ANLS, J. Cereb. Blood Flow Metab., 2012, E-pub ahead of print, doi: 10.1038/jcbfm.2011.149

  146. Suzuki A., Stern S.A., Bozdagi O., Huntley G.W., Walker R.H., Magistretti P.J., et al., Astrocyte-neuron lactate transport is required for long-term memory formation, Cell, 2011, 144, 810–823

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir Parpura.

About this article

Cite this article

Parpura, V., Verkhratsky, A. Homeostatic function of astrocytes: Ca2+ and Na+ signalling. Translat.Neurosci. 3, 334–344 (2012). https://doi.org/10.2478/s13380-012-0040-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s13380-012-0040-y

Keywords

Navigation