Skip to main content
Log in

The role of α-synuclein in neurodegeneration — An update

  • Review Article
  • Published:
Translational Neuroscience

Abstract

Genetic, neuropathological and biochemical evidence implicates α-synuclein, a 140 amino acid presynaptic neuronal protein, in the pathogenesis of Parkinson’s disease and other neurodegenerative disorders. The aggregated protein inclusions mainly containing aberrant α-synuclein are widely accepted as morphological hallmarks of α-synucleinopathies, but their composition and location vary between disorders along with neuronal networks affected. α-Synuclein exists physiologically in both soluble and membran-bound states, in unstructured and α-helical conformations, respectively, while posttranslational modifications due to proteostatic deficits are involved in β-pleated aggregation resulting in formation of typical inclusions. The physiological function of α-synuclein and its role linked to neurodegeneration, however, are incompletely understood. Soluble oligomeric, not fully fibrillar α-synuclein is thought to be neurotoxic, main targets might be the synapse, axons and glia. The effects of aberrant α-synuclein include alterations of calcium homeostasis, mitochondrial dysfunction, oxidative and nitric injuries, cytoskeletal effects, and neuroinflammation. Proteasomal dysfunction might be a common mechanism in the pathogenesis of neuronal degeneration in α-synucleinopathies. However, how α-synuclein induces neurodegeneration remains elusive as its physiological function. Genome wide association studies demonstrated the important role for genetic variants of the SNCA gene encoding α-synuclein in the etiology of Parkinson’s disease, possibly through effects on oxidation, mitochondria, autophagy, and lysosomal function. The neuropathology of synucleinopathies and the role of α-synuclein as a potential biomarker are briefly summarized. Although animal models provided new insights into the pathogenesis of Parkinson disease and multiple system atrophy, most of them do not adequately reproduce the cardinal features of these disorders. Emerging evidence, in addition to synergistic interactions of α-synuclein with various pathogenic proteins, suggests that prionlike induction and seeding of α-synuclein could lead to the spread of the pathology and disease progression. Intervention in the early aggregation pathway, aberrant cellular effects, or secretion of α-synuclein might be targets for neuroprotection and disease-modifying therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AD:

Alzheimer disease

ad:

autosomal-dominant

AGEP:

advanced glycation endproduct

ALP:

autophagy-lysosome pathway

ar:

autosomal-recessive

AS:

α-synuclein

Aβ:

β-amyloid

BS:

β-synuclein

CMA:

chaperone-mediated autophagy

CNS:

central nervous system

CSF:

cerebrospinal fluid

CSPα:

cystein string protein α

DA:

dopamine

DDLB:

diffuse dementia with Lewy bodies

DLB:

dementia with Lewy bodies

DNA:

desoxyribonucleic acid

Drp1:

dynamic-related protein 1

ER:

endpoplasmic reticulum

f:

familial

Fe:

iron

GBA:

glucocerebrosidase

GCI:

glial cytoplasmic inclusions

GS:

γ-synuclein

GSK-3β:

glycogen-synthase kinase-3β

GWAS:

genome wide association studies

Hsp:

heat-shock protein

iLBD:

incidental Lewy body disease

IMM:

inner mitochondrial membrane

LB:

Lewy body

LN:

Lewy neurite

LRRK2:

leucine-rich repeat kinase 2

LVB/AD:

Lewy body variant of Alzheimer disease

MAPK:

mitogen-activating protein kinase

MAPT:

tau protein gene

MBP:

myelin basic protein

MPTP:

1-methy l-4-phenyl-1, 2, 3, 6-tetrahydropyridine

mRNA:

messenger ribonucleic acid

MSA:

multiple system atrophy

MSA-C:

multiple system atrophy with predominant cerebellar ataxia

MSA-P:

multiple system atrophy with predominant parkinsonism

mtRNA:

mitochondrial ribonucleic acid

NAC:

non-amyloidogenic core

NCI:

neuronal cytoplasmic inclusion

nDNA:

nuclear DNA

NMR:

nuclear magnetic resonance

NSF:

N-ethylmaleimide-sensitive fusion protein

OMM:

outer mitochondrial membrane

OPCA:

olivopontocerebellar atrophy

OS:

oxidative stress

p:

phosphorylated

PD:

Parkinson disease

PDD:

Parkinson disease-dementia

PK:

proteinase K

ROS:

reactive oxygen species

s:

sporadic

Ser:

serin

SN:

substantia nigra

SNARE:

soluble N-ethylmaleimide-sensitive fusion protein (NSF) attachment protein receptor

SNCA:

α-synuclein gene

SNCB:

β-synuclein gene

SNCG:

γ-synuclein gene

SND:

striato-nigral degeneration

Syn:

synuclein

tg:

transgenic

TH:

tyrosine hydroxylase

TNF:

tumor necrosis factor

TPPP:

tubulin-polymerization-promoting protein

tTG:

tissue transglutaminase

Ub:

ubiquitin

UBA:

ubiquitin-associated

UCHL1:

ubiquitin carboxy-terminal hydrolase L1

UPP:

ubiquitin-proteasome pathway

UPR:

unfolded protein response

UPS:

ubiquitin-proteasomal system

WT:

wild type

References

  1. Vekrellis K., Xilouri M., Emmanouilidou E., Rideout H.J., Stefanis L., Pathological roles of α-synuclein in neurological disorders, Lancet Neurol., 2011, 10, 1015–1025

    Article  PubMed  CAS  Google Scholar 

  2. Farrer M.J., Genetics of Parkinson disease: paradigm shifts and future prospects, Nat. Rev. Genet., 2006, 7, 306–318

    Article  PubMed  CAS  Google Scholar 

  3. Spillantini M.G., Schmidt M.L., Lee V.M., Trojanowski J.Q., Jakes R., Goedert M., α-Synuclein in Lewy bodies, Nature, 1997, 388, 839–840

    Article  PubMed  CAS  Google Scholar 

  4. Scholz S.W., Houlden H., Schulte C., Sharma M., Li A., Berg D., et al., SNCA variants are associated with increased risk for multiple system atrophy, Ann. Neurol., 2009, 65, 610–614

    Article  PubMed  CAS  Google Scholar 

  5. Wirdefeldt K., Adami H.O., Cole P., Trichopoulos D., Mandel J., Epidemiology and etiology of Parkinson’s disease: a review of the evidence, Eur. J. Epidemiol., 2011, 26Suppl. 1, S1–58

    Article  PubMed  Google Scholar 

  6. Hornykiewicz O., Basic research on dopamine in Parkinson’s disease and the discovery of the nigrostriatal dopamine pathway: the view of an eyewitness, Neurodegener. Dis., 2008, 5, 114–117

    Article  PubMed  CAS  Google Scholar 

  7. Beach T.G., Adler C.H., Sue L.I., Vedders L., Lue L., White III C.L., et al., Multi-organ distribution of phosphorylated α-synuclein histopathology in subjects with Lewy body disorders, Acta Neuropathol., 2010, 119, 689–702

    Article  PubMed  CAS  Google Scholar 

  8. Jellinger K.A., Parkinson’s disease, In: Dickson D.W., Weller R.O., eds., Neurodegeneration: The molecular pathology of dementia and movement disorders, 2nd edition. Blackwell Publishing Ltd., Oxford, 2011

    Google Scholar 

  9. Jellinger K.A., Neuropathology of sporadic Parkinson’s disease: Evaluation and changes of concepts, Mov. Disord., 2012, 27, 8–30

    Article  PubMed  Google Scholar 

  10. Jellinger K.A., Synucleinopathies, In: Kompoliti K., Verhagen Metman L., eds., Encyclopedia of movement disorders, vol. 3] Academic Press, Oxford, 2010

    Google Scholar 

  11. Schlossmacher M.G., α-Synuclein and synucleinopathies, In: Growdon J., Rossor M.N., eds., The dementias 2] Butterworth Heinemann, London, 2007

    Google Scholar 

  12. Gai W.P., Pountney D.L., Power J.H., Li Q.X., Culvenor J.G., McLean C.A., et al., α-Synuclein fibrils constitute the central core of oligodendroglial inclusion filaments in multiple system atrophy, Exp. Neurol., 2003, 181, 68–78

    Article  PubMed  CAS  Google Scholar 

  13. Jellinger K.A., Lantos P.L., Papp-Lantos inclusions and the pathogenesis of multiple system atrophy: an update, Acta Neuropathol., 2010, 119, 657–667

    Article  PubMed  CAS  Google Scholar 

  14. Goedert M., α-Synuclein and neurodegenerative diseases, Nat Rev Neurosci, 2001, 2, 492–501

    Article  PubMed  CAS  Google Scholar 

  15. Forman M.S., Lee V.M., Trojanowski J.Q., Nosology of Parkinson’s disease: looking for the way out of a quagmire, Neuron, 2005, 47, 479–482

    Article  PubMed  CAS  Google Scholar 

  16. Paisan-Ruiz C., Parkkinen L., Revesz T., Lewy bodies in conditions other than disorders of α-synuclein, In: Dickson D.W., Weller R.O., eds., Neurodegeneration: The molecular pathology of dementia and movement disorders, 2nd edition. Blackwell Publishing Ltd., Oxford, 2011

    Google Scholar 

  17. Spillantini M.G., Introduction to α-synucleinopathies, In: Dickson D.W., Weller R.O., eds., Neurodegeneration: The molecular pathology of dementia and movement disorders, 2nd edition. Blackwell Publishing Ltd., Oxford, 2011

    Google Scholar 

  18. Trojanowski J.Q., Revesz T., Proposed neuropathological criteria for the post mortem diagnosis of multiple system atrophy, Neuropathol. Appl. Neurobiol., 2007, 33, 615–620

    Article  PubMed  CAS  Google Scholar 

  19. Fellner L., Jellinger K.A., Wenning G.K., Stefanova N., Glial dysfunction in the pathogenesis of α-synucleinopathies: emerging concepts, Acta Neuropathol., 2011, 121, 675–693

    Article  PubMed  CAS  Google Scholar 

  20. Halliday G.M., Stevens C.H., Glia: initiators and progressors of pathology in Parkinson’s disease, Mov. Disord., 2011, 26, 6–17

    Article  PubMed  Google Scholar 

  21. Campbell B.C., McLean C.A., Culvenor J.G., Gai W.P., Blumbergs P.C., Jakala P., et al., The solubility of α-synuclein in multiple system atrophy differs from that of dementia with Lewy bodies and Parkinson’s disease, J. Neurochem., 2001, 76, 87–96

    Article  PubMed  CAS  Google Scholar 

  22. Zhou J., Broe M., Huang Y., Anderson J.P., Gai W.-P., Milward E.A., et al., Changes in the solubility and phosphorylation of α-synuclein over the course of Parkinson’s disease, Acta Neuropathol., 2011, 121, 695–704

    Article  PubMed  CAS  Google Scholar 

  23. Spillantini M.G., Goedert M., The α-synucleinopathies: Parkinson’s disease, dementia with Lewy bodies, and multiple system atrophy, Ann. NY Acad. Sci., 2000, 920, 16–27

    Article  PubMed  CAS  Google Scholar 

  24. Angot E., Steiner J.A., Hansen C., Li J.Y., Brundin P., Are synucleinopathies prion-like disorders?, Lancet Neurol., 2010, 9, 1128–1138

    Article  PubMed  Google Scholar 

  25. Brundin P., Melki R., Kopito R., Prion-like transmission of protein aggregates in neurodegenerative diseases, Nat. Rev. Mol. Cell Biol., 2010, 11, 301–307

    Article  PubMed  CAS  Google Scholar 

  26. Hansen C., Angot E., Bergstrom A.L., Steiner J.A., Pieri L., Paul G., et al., α-Synuclein propagates from mouse brain to grafted dopaminergic neurons and seeds aggregation in cultured human cells, J. Clin. Invest., 2011, 121, 715–725

    Article  PubMed  CAS  Google Scholar 

  27. Olanow C.W., McNaught K., Parkinson’s disease, proteins, and prions: milestones, Mov. Disord., 2011, 26, 1056–1071

    Article  PubMed  Google Scholar 

  28. Dunning C.J., Reyes J.F., Steiner J.A., Brundin P., Can Parkinson’s disease pathology be propagated from one neuron to another?, Prog. Neurobiol., 2011, doi: 10.1016/j.pneurobio.2011.11.003 [Epub ahead of print]

  29. Gilman S., Low P.A., Quinn N., Albanese A., Ben-Shlomo Y., Fowler C.J., et al., Consensus statement on the diagnosis of multiple system atrophy, J. Neurol. Sci., 1999, 163, 94–98

    Article  PubMed  CAS  Google Scholar 

  30. Gilman S., Wenning G.K., Low P.A., Brooks D.J., Mathias C.J., Trojanowski J.Q., et al., Second consensus statement on the diagnosis of multiple system atrophy, Neurology, 2008, 71, 670–676

    Article  PubMed  CAS  Google Scholar 

  31. Devine M.J., Gwinn K., Singleton A., Hardy J., Parkinson’s disease and α-synuclein expression, Mov. Disord., 2011, 26, 2160–2168

    Article  PubMed  Google Scholar 

  32. Hardy J., Lewis P., Revesz T., Lees A., Paisan-Ruiz C., The genetics of Parkinson’s syndromes: a critical review, Curr. Opin. Genet. Dev., 2009, 19, 254–265

    Article  PubMed  CAS  Google Scholar 

  33. Valente E.M., Arena G., Torosantucci L., Gelmetti V., Molecular pathways in sporadic PD, Parkinsonism Relat. Disord., 2012, 18Suppl. 1, S71–73

    Article  PubMed  Google Scholar 

  34. Pilsl A., Winklhofer K.F., Parkin, PINK1 and mitochondrial integrity: emerging concepts of mitochondrial dysfunction in Parkinson’s disease, Acta Neuropathol., 2012, 123, 173–188

    Article  PubMed  CAS  Google Scholar 

  35. Gasser T., α-Synuclein and Parkinson’s disease, In: Schapira A.H.V., Lang A.E.T., Fahn S., eds., Movement disorders 4] Saunders-Elsevier, Philadelphia, 2010

    Google Scholar 

  36. Shino M.Y., McGuire V., Van Den Eeden S.K., Tanner C.M., Popat R., Leimpeter A., et al., Familial aggregation of Parkinson’s disease in a multiethnic community-based case-control study, Mov. Disord., 2010, 25, 2587–2594

    Article  PubMed  Google Scholar 

  37. Halliday G.M., Holton J.L., Revesz T., Dickson D.W., Neuropathology underlying clinical variability in patients with synucleinopathies, Acta Neuropathol., 2011, 122, 187–204

    Article  PubMed  CAS  Google Scholar 

  38. Halliday G., Lees A., Stern M., Milestones in Parkinson’s disease—clinical and pathologic features, Mov. Disord., 2011, 26, 1015–1021

    Article  PubMed  Google Scholar 

  39. Uversky V.N., Intrinsic disorder in proteins associated with neurodegenerative diseases, Front. Biosci., 2009, 14, 5188–5238

    Article  PubMed  CAS  Google Scholar 

  40. Lucking C.B., Brice A., α-Synuclein and Parkinson’s disease, Cell. Mol. Life Sci., 2000, 57, 1894–1908

    Article  PubMed  CAS  Google Scholar 

  41. Norris E.H., Giasson B.I., Lee V.M., α-Synuclein: normal function and role in neurodegenerative diseases, Curr. Top. Dev. Biol., 2004, 60, 17–54

    Article  PubMed  CAS  Google Scholar 

  42. Chen X., de Silva H.A., Pettenati M.J., Rao P.N., St George-Hyslop P., Roses A.D., et al., The human NACP/α-synuclein gene: chromosome assignment to 4q21.3-q22 and TaqI RFLP analysis, Genomics, 1995, 26, 425–427

    Article  PubMed  CAS  Google Scholar 

  43. Shibasaki Y., Baillie D.A., St Clair D., Brookes A.J., High-resolution mapping of SNCA encoding α-synuclein, the non-Aβ component of Alzheimer’s disease amyloid precursor, to human chromosome 4q21.3—>q22 by fluorescence in situ hybridization, Cytogenet. Cell Genet., 1995, 71, 54–55

    Article  PubMed  CAS  Google Scholar 

  44. Singleton A.B., Farrer M., Johnson J., Singleton A., Hague S., Kachergus J., et al., α-Synuclein locus triplication causes Parkinson’s disease, Science, 2003, 302, 841

    Article  PubMed  CAS  Google Scholar 

  45. Ma Q.L., Chan P., Yoshii M., Ueda K., α-Synuclein aggregation and neurodegenerative diseases, J. Alzheimers Dis., 2003, 5, 139–148

    PubMed  CAS  Google Scholar 

  46. Surguchov A., Molecular and cellular biology of synucleins, Int. Rev. Cell Mol. Biol., 2008, 270, 225–317

    Article  PubMed  CAS  Google Scholar 

  47. Davidson W.S., Jonas A., Clayton D.F., George J.M., Stabilization of α-synuclein secondary structure upon binding to synthetic membranes, J. Biol. Chem., 1998, 273, 9443–9449

    Article  PubMed  CAS  Google Scholar 

  48. Jao C.C., Der-Sarkissian A., Chen J., Langen R., Structure of membranebound α-synuclein studied by site-directed spin labeling, Proc. Natl. Acad. Sci. USA, 2004, 101, 8331–8336

    Article  PubMed  CAS  Google Scholar 

  49. Vekrellis K., Rideout H.J., Stefanis L., Neurobiology of α-synuclein, Mol. Neurobiol., 2004, 30, 1–21

    Article  PubMed  CAS  Google Scholar 

  50. Venda L.L., Cragg S.J., Buchman V.L., Wade-Martins R., α-Synuclein and dopamine at the crossroads of Parkinson’s disease, Trends Neurosci., 2010, 33, 559–568

    Article  PubMed  CAS  Google Scholar 

  51. Beyer K., α-Synuclein structure, posttranslational modification and alternative splicing as aggregation enhancers, Acta Neuropathol., 2006, 112, 237–251

    Article  PubMed  CAS  Google Scholar 

  52. Ueda K., Fukushima H., Masliah E., Xia Y., Iwai A., Yoshimoto M., et al., Molecular cloning of cDNA encoding an unrecognized component of amyloid in Alzheimer disease, Proc. Natl. Acad. Sci. USA, 1993, 90, 11282–11286

    Article  PubMed  CAS  Google Scholar 

  53. Ueda K., Saitoh T., Mori H., Tissue-dependent alternative splicing of mRNA for NACP, the precursor of non-Aβ component of Alzheimer’s disease amyloid, Biochem. Biophys. Res. Commun., 1994, 205, 1366–1372

    Article  PubMed  CAS  Google Scholar 

  54. George J.M., The synucleins, Genome Biol., 2002, 3, reviews3002-reviews3002.3006, doi: 3010.1186/gb-2001-3003-3001-reviews3002

  55. Ji H., Liu Y.E., Jia T., Wang M., Liu J., Xiao G., et al., Identification of a breast cancer-specific gene, BCSG1, by direct differential cDNA sequencing, Cancer Res., 1997, 57, 759–764

    PubMed  CAS  Google Scholar 

  56. Giasson B.I., Murray I.V., Trojanowski J.Q., Lee V.M., A hydrophobic stretch of 12 amino acid residues in the middle of α-synuclein is essential for filament assembly, J. Biol. Chem., 2001, 276, 2380–2386

    Article  PubMed  CAS  Google Scholar 

  57. Bartels T., Choi J.G., Selkoe D.J., α-Synuclein occurs physiologically as a helically folded tetramer that resists aggregation, Nature, 2011, 477, 107–110

    Article  PubMed  CAS  Google Scholar 

  58. Wang W., Perovic I., Chittuluru J., Kaganovich A., Nguyen L.T., Liao J., et al., A soluble α-synuclein construct forms a dynamic tetramer, Proc. Natl. Acad. Sci. USA, 2011, 108, 17797–17802

    Article  PubMed  CAS  Google Scholar 

  59. Fauvet B., Mbefo M.K., Fares M.B., Desobry C., Michael S., Ardah M.T., et al., α-Synuclein in the central nervous system and from erythrocytes, mammalian cells and E. coli exists predominantly as a disordered monomer, J. Biol. Chem., 2012, in press, doi: 10.1074/jbc. M1111.318949

  60. Volpicelli-Daley L.A., Luk K.C., Patel T.P., Tanik S.A., Riddle D.M., Stieber A., et al., Exogenous α-synuclein fibrils induce Lewy body pathology leading to synaptic dysfunction and neuron death, Neuron, 2011, 72, 57–71

    Article  PubMed  CAS  Google Scholar 

  61. El-Agnaf O.M., Irvine G.B., Aggregation and neurotoxicity of α-synuclein and related peptides, Biochem. Soc. Trans., 2002, 30, 559–565

    Article  PubMed  CAS  Google Scholar 

  62. Serpell L.C., Berriman J., Jakes R., Goedert M., Crowther R.A., Fiber diffraction of synthetic α-synuclein filaments shows amyloid-like cross-β conformation, Proc. Natl. Acad. Sci USA, 2000, 97, 4897–4902

    Article  PubMed  CAS  Google Scholar 

  63. Uversky V.N., A protein-chameleon: conformational plasticity of α-synuclein, a disordered protein involved in neurodegenerative disorders, J. Biomol. Struct. Dyn., 2003, 21, 211–234

    Article  PubMed  CAS  Google Scholar 

  64. Kessler J.C., Rochet J.C., Lansbury P.T., Jr., The N-terminal repeat domain of α-synuclein inhibits β-sheet and amyloid fibril formation, Biochemistry, 2003, 42, 672–678

    Article  PubMed  CAS  Google Scholar 

  65. Braun A.R., Sevcsik E., Chin P., Rhoades E., Tristram-Nagle S., Sachs J.N., α-Synuclein induces both positive mean curvature and negative Gaussian curvature in membranes, J. Am. Chem. Soc., 2012, 134, 2613–2620

    Article  PubMed  CAS  Google Scholar 

  66. Bodner C.R., Maltsev A.S., Dobson C.M., Bax A., Differential phospholipid binding of α-synuclein variants implicated in Parkinson’s disease revealed by solution NMR spectroscopy, Biochemistry, 2010, 49, 862–871

    Article  PubMed  CAS  Google Scholar 

  67. Fink A.L., The aggregation and fibrillation of α-synuclein, Acc. Chem. Res., 2006, 39, 628–634

    Article  PubMed  CAS  Google Scholar 

  68. Uversky V.N., Neuropathology, biochemistry, and biophysics of α-synuclein aggregation, J. Neurochem., 2007, 103, 17–37

    PubMed  CAS  Google Scholar 

  69. Waxman E.A., Giasson B.I., Molecular mechanisms of α-synuclein neurodegeneration, Biochim. Biophys. Acta, 2009, 1792, 616–624

    PubMed  CAS  Google Scholar 

  70. Ferreon A.C., Gambin Y., Lemke E.A., Deniz A.A., Interplay of α-synuclein binding and conformational switching probed by singlemolecule fluorescence, Proc. Natl. Acad. Sci. USA, 2009, 106, 5645–5650

    Article  PubMed  CAS  Google Scholar 

  71. Weinreb P.H., Zhen W., Poon A.W., Conway K.A., Lansbury P.T., Jr., NACP, a protein implicated in Alzheimer’s disease and learning, is natively unfolded, Biochemistry, 1996, 35, 13709–13715

    Article  PubMed  CAS  Google Scholar 

  72. Perrin R.J., Woods W.S., Clayton D.F., George J.M., Interaction of human α-Synuclein and Parkinson’s disease variants with phospholipids. Structural analysis using site-directed mutagenesis, J. Biol. Chem., 2000, 275, 34393–34398

    Article  PubMed  CAS  Google Scholar 

  73. Sidhu A., Wersinger C., Moussa C.E., Vernier P., The role of α-synuclein in both neuroprotection and neurodegeneration, Ann. NY Acad. Sci., 2004, 1035, 250–270

    Article  PubMed  CAS  Google Scholar 

  74. Bussell R., Jr., Ramlall T.F., Eliezer D., Helix periodicity, topology, and dynamics of membrane-associated α-synuclein, Protein Sci., 2005, 14, 862–872

    Article  PubMed  CAS  Google Scholar 

  75. Breydo L., Wu J.W., Uversky V.N., α-Synuclein misfolding and Parkinson’s disease, Biochim. Biophys. Acta, 2012, 1822, 261–285

    PubMed  CAS  Google Scholar 

  76. Dikiy I., Eliezer D., Folding and misfolding of α-synuclein on membranes, Biochim. Biophys. Acta, 2011, 1818, 1013–1018

    PubMed  Google Scholar 

  77. Conway K.A., Lee S.J., Rochet J.C., Ding T.T., Williamson R.E., Lansbury P.T., Jr., Acceleration of oligomerization, not fibrillization, is a shared property of both α-synuclein mutations linked to early-onset Parkinson’s disease: implications for pathogenesis and therapy, Proc Natl. Acad. Sci. USA, 2000, 97, 571–576

    Article  PubMed  CAS  Google Scholar 

  78. Comellas G., Lemkau L.R., Nieuwkoop A.J., Kloepper K.D., Ladror D.T., Ebisu R., et al., Structured regions of α-synuclein fibrils include the early-onset Parkinson’s disease mutation sites, J. Mol. Biol., 2011, 411, 881–895

    Article  PubMed  CAS  Google Scholar 

  79. Bennett M.C., The role of α-synuclein in neurodegenerative diseases, Pharmacol. Ther., 2005, 105, 311–331

    Article  PubMed  CAS  Google Scholar 

  80. Clayton D.F., George J.M., Synucleins in synaptic plasticity and neurodegenerative disorders, J. Neurosci. Res., 1999, 58, 120–129

    Article  PubMed  CAS  Google Scholar 

  81. Totterdell S., Meredith G.E., Localization of α-synuclein to identified fibers and synapses in the normal mouse brain, Neuroscience, 2005, 135, 907–913

    Article  PubMed  CAS  Google Scholar 

  82. Liu G., Zhang C., Yin J., Li X., Cheng F., Li Y., et al., α-Synuclein is differentially expressed in mitochondria from different rat brain regions and dose-dependently down-regulates complex I activity, Neurosci. Lett., 2009, 454, 187–192

    Article  PubMed  CAS  Google Scholar 

  83. Zhang L., Zhang C., Zhu Y., Cai Q., Chan P., Ueda K., et al., Semiquantitative analysis of α-synuclein in subcellular pools of rat brain neurons: an immunogold electron microscopic study using a C-terminal specific monoclonal antibody, Brain Res., 2008, 1244, 40–52

    Article  PubMed  CAS  Google Scholar 

  84. Duda J.E., Shah U., Arnold S.E., Lee V.M., Trojanowski J.Q., The expression of α-, β-, and Γ-synucleins in olfactory mucosa from patients with and without neurodegenerative diseases, Exp. Neurol., 1999, 160, 515–522

    Article  PubMed  CAS  Google Scholar 

  85. Askanas V., Engel W.K., Alvarez R.B., McFerrin J., Broccolini A., Novel immunolocalization of α-synuclein in human muscle of inclusionbody myositis, regenerating and necrotic muscle fibers, and at neuromuscular junctions, J. Neuropathol. Exp. Neurol., 2000, 59, 592–598

    PubMed  CAS  Google Scholar 

  86. Lavedan C., The synuclein family, Genome Res., 1998, 8, 871–880

    PubMed  CAS  Google Scholar 

  87. Richter-Landsberg C., Gorath M., Trojanowski J.Q., Lee V.M., α-synuclein is developmentally expressed in cultured rat brain oligodendrocytes, J. Neurosci. Res., 2000, 62, 9–14

    Article  PubMed  CAS  Google Scholar 

  88. Abeliovich A., Schmitz Y., Farinas I., Choi-Lundberg D., Ho W.H., Castillo P.E., et al., Mice lacking α-synuclein display functional deficits in the nigrostriatal dopamine system, Neuron, 2000, 25, 239–252

    Article  PubMed  CAS  Google Scholar 

  89. Tanji K., Mori F., Nakajo S., Imaizumi T., Yoshida H., Hirabayashi T., et al., Expression of β-synuclein in normal human astrocytes, Neuroreport, 2001, 12, 2845–2848

    Article  PubMed  CAS  Google Scholar 

  90. Buchman V.L., Hunter H.J., Pinon L.G., Thompson J., Privalova E.M., Ninkina N.N., et al., Persyn, a member of the synuclein family, has a distinct pattern of expression in the developing nervous system, J. Neurosci., 1998, 18, 9335–9341

    PubMed  CAS  Google Scholar 

  91. Ninkina N., Peters O., Millership S., Salem H., van der Putten H., Buchman V.L., Gamma-synucleinopathy: neurodegeneration associated with overexpression of the mouse protein, Hum. Mol. Genet., 2009, 18, 1779–1794

    Article  PubMed  CAS  Google Scholar 

  92. Hurtig H.I., Trojanowski J.Q., Galvin J., Ewbank D., Schmidt M.L., Lee V.M., et al., α-Synuclein cortical Lewy bodies correlate with dementia in Parkinson’s disease, Neurology, 2000, 54, 1916–1921

    Article  PubMed  CAS  Google Scholar 

  93. Jakes R., Spillantini M.G., Goedert M., Identification of two distinct synucleins from human brain, FEBS Lett., 1994, 345, 27–32

    Article  PubMed  CAS  Google Scholar 

  94. Maroteaux L., Campanelli J.T., Scheller R.H., Synuclein: a neuronspecific protein localized to the nucleus and presynaptic nerve terminal, J. Neurosci., 1988, 8, 2804–2815

    PubMed  CAS  Google Scholar 

  95. Murphy D.D., Rueter S.M., Trojanowski J.Q., Lee V.M., Synucleins are developmentally expressed, and α-synuclein regulates the size of the presynaptic vesicular pool in primary hippocampal neurons, J. Neurosci., 2000, 20, 3214–3220

    PubMed  CAS  Google Scholar 

  96. Mori F., Tanji K., Yoshimoto M., Takahashi H., Wakabayashi K., Demonstration of α-synuclein immunoreactivity in neuronal and glial cytoplasm in normal human brain tissue using proteinase K and formic acid pretreatment, Exp. Neurol., 2002, 176, 98–104

    Article  PubMed  CAS  Google Scholar 

  97. Mori F., Inenaga C., Yoshimoto M., Umezu H., Tanaka R., Takahashi H., et al., α-Synuclein immunoreactivity in normal and neoplastic Schwann cells, Acta Neuropathol., 2002, 103, 145–151

    Article  PubMed  CAS  Google Scholar 

  98. Andringa G., Bol J.G., Wang X., Boekel A., Bennett M.C., Chase T.N., et al., Changed distribution pattern of the constitutive rather than the inducible HSP70 chaperone in neuromelanin-containing neurones of the Parkinsonian midbrain, Neuropathol. Appl. Neurobiol., 2006, 32, 157–169

    Article  PubMed  CAS  Google Scholar 

  99. Kahle P.J., α-Synucleinopathy models and human neuropathology: similarities and differences, Acta Neuropathol., 2008, 115, 87–95

    Article  PubMed  CAS  Google Scholar 

  100. Cuervo A.M., Wong E.S., Martinez-Vicente M., Protein degradation, aggregation, and misfolding, Mov. Disord., 2010, 25Suppl. 1, S49–54

    Article  PubMed  Google Scholar 

  101. Martinez-Vicente M., Cuervo A.M., Autophagy and neurodegeneration: when the cleaning crew goes on strike, Lancet Neurol., 2007, 6, 352–361

    Article  PubMed  CAS  Google Scholar 

  102. Demartino G.N., Gillette T.G., Proteasomes: machines for all reasons, Cell, 2007, 129, 659–662

    Article  PubMed  CAS  Google Scholar 

  103. Kim Y.M., Jang W.H., Quezado M.M., Oh Y., Chung K.C., Junn E., et al., Proteasome inhibition induces α-synuclein SUMOylation and aggregate formation, J. Neurol. Sci., 2011, 307, 157–161

    Article  PubMed  CAS  Google Scholar 

  104. Krumova P., Meulmeester E., Garrido M., Tirard M., Hsiao H.H., Bossis G., et al., Sumoylation inhibits α-synuclein aggregation and toxicity, J. Cell Biol., 2011, 194, 49–60

    Article  PubMed  CAS  Google Scholar 

  105. Cullen V., Lindfors M., Ng J., Paetau A., Swinton E., Kolodziej P., et al., Cathepsin D expression level affects α-synuclein processing, aggregation, and toxicity in vivo, Mol. Brain, 2009, 2, 5, doi:10.1186/1756-6606-1182-1185)

    Article  PubMed  CAS  Google Scholar 

  106. Zhu M., Fink A.L., Lipid binding inhibits α-synuclein fibril formation, J. Biol. Chem., 2003, 278, 16873–16877

    Article  PubMed  CAS  Google Scholar 

  107. Uversky V.N., Fink A.L., Conformational constraints for amyloid fibrillation: the importance of being unfolded, Biochim. Biophys. Acta, 2004, 1698, 131–153

    PubMed  CAS  Google Scholar 

  108. Uversky V.N., Li J., Fink A.L., Evidence for a partially folded intermediate in α-synuclein fibril formation, J. Biol. Chem., 2001, 276, 10737–10744

    Article  PubMed  CAS  Google Scholar 

  109. Li J., Uversky V.N., Fink A.L., Effect of familial Parkinson’s disease point mutations A30P and A53T on the structural properties, aggregation, and fibrillation of human α-synuclein, Biochemistry, 2001, 40, 11604–11613

    Article  PubMed  CAS  Google Scholar 

  110. Hashimoto M., Rockenstein E., Mante M., Mallory M., Masliah E., β-Synuclein inhibits α-synuclein aggregation: a possible role as an anti-parkinsonian factor, Neuron, 2001, 32, 213–223

    Article  PubMed  CAS  Google Scholar 

  111. Kaur D., Andersen J., Does cellular iron dysregulation play a causative role in Parkinson’s disease?, Ageing Res. Rev., 2004, 3, 327–343

    Article  PubMed  CAS  Google Scholar 

  112. Ostrerova-Golts N., Petrucelli L., Hardy J., Lee J.M., Farer M., Wolozin B., The A53T α-synuclein mutation increases iron-dependent aggregation and toxicity, J. Neurosci., 2000, 20, 6048–6054

    PubMed  CAS  Google Scholar 

  113. Cole N.B., Murphy D.D., Lebowitz J., Di Noto L., Levine R.L., Nussbaum R.L., Metal-catalyzed oxidation of α-synuclein: helping to define the relationship between oligomers, protofibrils, and filaments, J. Biol. Chem., 2005, 280, 9678–9690

    Article  PubMed  CAS  Google Scholar 

  114. Munch G., Luth H.J., Wong A., Arendt T., Hirsch E., Ravid R., et al., Crosslinking of α-synuclein by advanced glycation endproducts—an early pathophysiological step in Lewy body formation?, J. Chem. Neuroanat., 2000, 20, 253–257

    Article  PubMed  CAS  Google Scholar 

  115. Munch G., Westcott B., Menini T., Gugliucci A., Advanced glycation endproducts and their pathogenic roles in neurological disorders, Amino Acids, 2012, 42, 1221–1236 [Epub 2010]

    Article  PubMed  CAS  Google Scholar 

  116. Nath S., Goodwin J., Engelborghs Y., Pountney D.L., Raised calcium promotes α-synuclein aggregate formation, Mol. Cell. Neurosci., 2011, 46, 516–526

    Article  PubMed  CAS  Google Scholar 

  117. Falsone S.F., Kungl A.J., Rek A., Cappai R., Zangger K., The molecular chaperone Hsp90 modulates intermediate steps of amyloid assembly of the Parkinson-related protein α-synuclein, J. Biol. Chem., 2009, 284, 31190–31199

    Article  PubMed  CAS  Google Scholar 

  118. Anderson J.P., Walker D.E., Goldstein J.M., de Laat R., Banducci K., Caccavello R.J., et al., Phosphorylation of Ser-129 is the dominant pathological modification of α-synuclein in familial and sporadic Lewy body disease, J. Biol. Chem., 2006, 281, 29739–29752

    Article  PubMed  CAS  Google Scholar 

  119. Qing H., Wong W., McGeer E.G., McGeer P.L., Lrrk2 phosphorylates α-synuclein at serine 129: Parkinson disease implications, Biochem. Biophys. Res. Commun., 2009, 387, 149–152

    Article  PubMed  CAS  Google Scholar 

  120. Waxman E.A., Giasson B.I., Specificity and regulation of casein kinase-mediated phosphorylation of α-synuclein, J. Neuropathol. Exp. Neurol., 2008, 67, 402–416

    Article  PubMed  CAS  Google Scholar 

  121. Waxman E.A., Giasson B.I., Induction of intracellular tau aggregation is promoted by α-synuclein seeds and provides novel insights into the hyperphosphorylation of tau, J. Neurosci., 2011, 31, 7604–7618

    Article  PubMed  CAS  Google Scholar 

  122. Fujiwara H., Hasegawa M., Dohmae N., Kawashima A., Masliah E., Goldberg M.S., et al., α-Synuclein is phosphorylated in synucleinopathy lesions, Nat. Cell Biol., 2002, 4, 160–164

    Article  PubMed  CAS  Google Scholar 

  123. Kuusisto E., Parkkinen L., Alafuzoff I., Morphogenesis of Lewy bodies: dissimilar incorporation of α-synuclein, ubiquitin, and p62, J. Neuropathol. Exp. Neurol., 2003, 62, 1241–1253

    PubMed  CAS  Google Scholar 

  124. Engelender S., Ubiquitination of α-synuclein and autophagy in Parkinson’s disease, Autophagy, 2008, 4, 372–374

    PubMed  CAS  Google Scholar 

  125. Lee K.W., Chen W., Junn E., Im J.Y., Grosso H., Sonsalla P.K., et al., Enhanced phosphatase activity attenuates α-Synucleinopathy in a mouse model, J. Neurosci., 2011, 31, 6963–6971

    Article  PubMed  CAS  Google Scholar 

  126. Machiya Y., Hara S., Arawaka S., Fukushima S., Sato H., Sakamoto M., et al., Phosphorylated α-synuclein at Ser-129 is targeted to the proteasome pathway in a ubiquitin-independent manner, J. Biol. Chem., 2010, 285, 40732–40744

    Article  PubMed  CAS  Google Scholar 

  127. Zhu M., Li J., Fink A.L., The association of α-synuclein with membranes affects bilayer structure, stability, and fibril formation, J. Biol. Chem., 2003, 278, 40186–40197

    Article  PubMed  CAS  Google Scholar 

  128. Lee H.J., Choi C., Lee S.J., Membrane-bound α-synuclein has a high aggregation propensity and the ability to seed the aggregation of the cytosolic form, J. Biol. Chem., 2002, 277, 671–678

    Article  PubMed  CAS  Google Scholar 

  129. Conway K.A., Harper J.D., Lansbury P.T., Accelerated in vitro fibril formation by a mutant α-synuclein linked to early-onset Parkinson disease, Nat. Med., 1998, 4, 1318–1320

    Article  PubMed  CAS  Google Scholar 

  130. Narayanan V., Scarlata S., Membrane binding and self-association of α-synucleins, Biochemistry, 2001, 40, 9927–9934

    Article  PubMed  CAS  Google Scholar 

  131. Beyer K., Domingo-Sabat M., Lao J.I., Carrato C., Ferrer I., Ariza A., Identification and characterization of a new α-synuclein isoform and its role in Lewy body diseases, Neurogenetics, 2008, 9, 15–23

    Article  PubMed  Google Scholar 

  132. Fortin D.L., Nemani V.M., Nakamura K., Edwards R.H., The behavior of α-synuclein in neurons, Mov. Disord., 2010, 25Suppl. 1, S21–26

    Article  PubMed  Google Scholar 

  133. Periquet M., Fulga T., Myllykangas L., Schlossmacher M.G., Feany M.B., Aggregated α-synuclein mediates dopaminergic neurotoxicity in vivo, J. Neurosci., 2007, 27, 3338–3346

    Article  PubMed  CAS  Google Scholar 

  134. Cookson M.R., α-Synuclein and neuronal cell death, Mol. Neurodegener., 2009, 4, 9

    Article  PubMed  CAS  Google Scholar 

  135. Bennett M.C., Bishop J.F., Leng Y., Chock P.B., Chase T.N., Mouradian M.M., Degradation of α-synuclein by proteasome, J. Biol. Chem., 1999, 274, 33855–33858

    Article  PubMed  CAS  Google Scholar 

  136. Webb J.L., Ravikumar B., Atkins J., Skepper J.N., Rubinsztein D.C., α-Synuclein is degraded by both autophagy and the proteasome, J. Biol. Chem., 2003, 278, 25009–25013

    Article  PubMed  CAS  Google Scholar 

  137. Emmanouilidou E., Stefanis L., Vekrellis K., Cell-produced α-synuclein oligomers are targeted to, and impair, the 26S proteasome, Neurobiol. Aging, 2010, 31, 953–968

    Article  PubMed  CAS  Google Scholar 

  138. Cuervo A.M., Stefanis L., Fredenburg R., Lansbury P.T., Sulzer D., Impaired degradation of mutant α-synuclein by chaperonemediated autophagy, Science, 2004, 305, 1292–1295

    Article  PubMed  CAS  Google Scholar 

  139. Lee H.J., Khoshaghideh F., Patel S., Lee S.J., Clearance of α-synuclein oligomeric intermediates via the lysosomal degradation pathway, J. Neurosci., 2004, 24, 1888–1896

    Article  PubMed  CAS  Google Scholar 

  140. Vogiatzi T., Xilouri M., Vekrellis K., Stefanis L., Wild type α-synuclein is degraded by chaperone-mediated autophagy and macroautophagy in neuronal cells, J. Biol. Chem., 2008, 283, 23542–23556

    Article  PubMed  CAS  Google Scholar 

  141. Ebrahimi-Fakhari D., Cantuti-Castelvetri I., Fan Z., Rockenstein E., Masliah E., Hyman B.T., et al., Distinct roles in vivo for the ubiquitinproteasome system and the autophagy-lysosomal pathway in the degradation of α-synuclein, J. Neurosci., 2011, 31, 14508–14520

    Article  PubMed  CAS  Google Scholar 

  142. Ebrahimi-Fakhari D., Wahlster L., McLean P.J., Molecular chaperones in Parkinson’s disease — present and future, J. Parkinsons Dis., 2011, 1, 299–320

    PubMed  Google Scholar 

  143. Xilouri M., Vogiatzi T., Vekrellis K., Stefanis L., α-synuclein degradation by autophagic pathways: a potential key to Parkinson’s disease pathogenesis, Autophagy, 2008, 4, 917–919

    PubMed  CAS  Google Scholar 

  144. Tofaris G.K., Kim H.T., Hourez R., Jung J.W., Kim K.P., Goldberg A.L., Ubiquitin ligase Nedd4 promotes α-synuclein degradation by the endosomal-lysosomal pathway, Proc. Natl. Acad. Sci. USA, 2011, 108, 17004–17009

    Article  PubMed  CAS  Google Scholar 

  145. Lynch-Day M.A., Mao K., Wang K., Zhao M., Klionsky D.J., The role of autophagy in Parkinson’s disease, Cold Spring Harb. Perspect. Med., 2012, 2, a009357

    PubMed  Google Scholar 

  146. Winslow A.R., Chen C.W., Corrochano S., Acevedo-Arozena A., Gordon D.E., Peden A.A., et al., α-Synuclein impairs macroautophagy: implications for Parkinson’s disease, J. Cell. Biol., 2010, 190, 1023–1037

    Article  PubMed  CAS  Google Scholar 

  147. Alvarez-Erviti L., Rodriguez-Oroz M.C., Cooper J.M., Caballero C., Ferrer I., Obeso J.A., et al., Chaperone-mediated autophagy markers in Parkinson disease brains, Arch. Neurol., 2010, 67, 1464–1472

    Article  PubMed  Google Scholar 

  148. Iwai A., Masliah E., Yoshimoto M., Ge N., Flanagan L., de Silva H.A., et al., The precursor protein of non-A β component of Alzheimer’s disease amyloid is a presynaptic protein of the central nervous system, Neuron, 1995, 14, 467–475

    Article  PubMed  CAS  Google Scholar 

  149. Cabin D.E., Shimazu K., Murphy D., Cole N.B., Gottschalk W., McIlwain K.L., et al., Synaptic vesicle depletion correlates with attenuated synaptic responses to prolonged repetitive stimulation in mice lacking α-synuclein, J. Neurosci., 2002, 22, 8797–8807

    PubMed  CAS  Google Scholar 

  150. Withers G.S., George J.M., Banker G.A., Clayton D.F., Delayed localization of synelfin (synuclein, NACP) to presynaptic terminals in cultured rat hippocampal neurons, Dev. Brain. Res., 1997, 99, 87–94

    Article  CAS  Google Scholar 

  151. Chandra S., Gallardo G., Fernandez-Chacon R., Schluter O.M., Sudhof T.C., α-Synuclein cooperates with CSPα in preventing neurodegeneration, Cell, 2005, 123, 383–396

    Article  PubMed  CAS  Google Scholar 

  152. de Silva H.R., Khan N.L., Wood N.W., The genetics of Parkinson’s disease, Curr. Opin. Genet. Dev., 2000, 10, 292–298

    Article  PubMed  Google Scholar 

  153. Burre J., Sharma M., Tsetsenis T., Buchman V., Etherton M.R., Sudhof T.C., α-Synuclein promotes SNARE-complex assembly in vivo and in vitro, Science, 2010, 329, 1663–1667

    Article  PubMed  CAS  Google Scholar 

  154. Thayanidhi N., Helm J.R., Nycz D.C., Bentley M., Liang Y., Hay J.C., α-Synuclein delays endoplasmic reticulum (ER)-to-Golgi transport in mammalian cells by antagonizing ER/Golgi SNAREs, Mol. Biol. Cell, 2010, 21, 1850–1863

    Article  PubMed  CAS  Google Scholar 

  155. Chandra S., Fornai F., Kwon H.B., Yazdani U., Atasoy D., Liu X., et al., Double-knockout mice for α- and β-synucleins: effect on synaptic functions, Proc. Natl. Acad. Sci. USA, 2004, 101, 14966–14971

    Article  PubMed  CAS  Google Scholar 

  156. Senior S.L., Ninkina N., Deacon R., Bannerman D., Buchman V.L., Cragg S.J., et al., Increased striatal dopamine release and hyperdopaminergic-like behaviour in mice lacking both α-synuclein and gamma-synuclein, Eur. J. Neurosci., 2008, 27, 947–957

    Article  PubMed  Google Scholar 

  157. Gureviciene I., Gurevicius K., Tanila H., Role of α-synuclein in synaptic glutamate release, Neurobiol. Dis., 2007, 28, 83–89

    Article  PubMed  CAS  Google Scholar 

  158. Yavich L., Tanila H., Vepsalainen S., Jakala P., Role of α-synuclein in presynaptic dopamine recruitment, J. Neurosci., 2004, 24, 11165–11170

    Article  PubMed  CAS  Google Scholar 

  159. Larsen K.E., Schmitz Y., Troyer M.D., Mosharov E., Dietrich P., Quazi A.Z., et al., α-Synuclein overexpression in PC12 and chromaffin cells impairs catecholamine release by interfering with a late step in exocytosis, J. Neurosci., 2006, 26, 11915–11922

    Article  PubMed  CAS  Google Scholar 

  160. Nemani V.M., Lu W., Berge V., Nakamura K., Onoa B., Lee M.K., et al., Increased expression of α-synuclein reduces neurotransmitter release by inhibiting synaptic vesicle reclustering after endocytosis, Neuron, 2010, 65, 66–79

    Article  PubMed  CAS  Google Scholar 

  161. Scott D.A., Tabarean I., Tang Y., Cartier A., Masliah E., Roy S., A pathologic cascade leading to synaptic dysfunction in α-synucleininduced neurodegeneration, J. Neurosci., 2010, 30, 8083–8095

    Article  PubMed  CAS  Google Scholar 

  162. Sulzer D., Clues to how α-synuclein damages neurons in Parkinson’s disease, Mov. Disord., 2010, 25Suppl. 1, S27–31

    Article  PubMed  Google Scholar 

  163. Tofaris G.K., Spillantini M.G., Physiological and pathological properties of α-synuclein, Cell. Mol. Life Sci., 2007, 64, 2194–2201

    Article  PubMed  CAS  Google Scholar 

  164. Cooper A.A., Gitler A.D., Cashikar A., Haynes C.M., Hill K.J., Bhullar B., et al., α-Synuclein blocks ER-Golgi traffic and Rab1 rescues neuron loss in Parkinson’s models, Science, 2006, 313, 324–328

    Article  PubMed  CAS  Google Scholar 

  165. Gallardo G., Schluter O.M., Sudhof T.C., A molecular pathway of neurodegeneration linking α-synuclein to ApoE and Aβ peptides, Nat. Neurosci., 2008, 11, 301–308

    Article  PubMed  CAS  Google Scholar 

  166. Jo E., McLaurin J., Yip C.M., St George-Hyslop P., Fraser P.E., α-Synuclein membrane interactions and lipid specificity, J. Biol. Chem., 2000, 275, 34328–34334

    Article  PubMed  CAS  Google Scholar 

  167. McLean P.J., Kawamata H., Ribich S., Hyman B.T., Membrane association and protein conformation of α-synuclein in intact neurons. Effect of Parkinson’s disease-linked mutations, J. Biol. Chem., 2000, 275, 8812–8816

    Article  PubMed  CAS  Google Scholar 

  168. Mihajlovic M., Lazaridis T., Membrane-bound structure and energetics of α-synuclein, Proteins, 2008, 70, 761–778

    Article  PubMed  CAS  Google Scholar 

  169. Kim Y.S., Laurine E., Woods W., Lee S.J., A novel mechanism of interaction between α-synuclein and biological membranes, J. Mol. Biol., 2006, 360, 386–397

    Article  PubMed  CAS  Google Scholar 

  170. Sharon R., Goldberg M.S., Bar-Josef I., Betensky R.A., Shen J., Selkoe D.J., α-Synuclein occurs in lipid-rich high molecular weight complexes, binds fatty acids, and shows homology to the fatty acid-binding proteins, Proc. Natl. Acad. Sci. USA, 2001, 98, 9110–9115

    Article  PubMed  CAS  Google Scholar 

  171. Anwar S., Peters O., Millership S., Ninkina N., Doig N., Connor-Robson N., et al., Functional alterations to the nigrostriatal system in mice lacking all three members of the synuclein family, J. Neurosci., 2011, 31, 7264–7274

    Article  PubMed  CAS  Google Scholar 

  172. Greten-Harrison B., Polydoro M., Morimoto-Tomita M., Diao L., Williams A.M., Nie E.H., et al., αβΓ-Synuclein triple knockout mice reveal age-dependent neuronal dysfunction, Proc. Natl. Acad. Sci. USA, 2010, 107, 19573–19578

    Article  PubMed  CAS  Google Scholar 

  173. Al-Wandi A., Ninkina N., Millership S., Williamson S.J., Jones P.A., Buchman V.L., Absence of α-synuclein affects dopamine metabolism and synaptic markers in the striatum of aging mice, Neurobiol. Aging, 2010, 31, 796–804

    Article  PubMed  CAS  Google Scholar 

  174. Lotharius J., Brundin P., Pathogenesis of Parkinson’s disease: dopamine, vesicles and α-synuclein, Nat. Rev. Neurosci., 2002, 3, 932–942

    Article  PubMed  CAS  Google Scholar 

  175. Chu Y., Dodiya H., Aebischer P., Olanow C.W., Kordower J.H., Alterations in lysosomal and proteasomal markers in Parkinson’s disease: relationship to α-synuclein inclusions, Neurobiol. Dis., 2009, 35, 385–398

    Article  PubMed  CAS  Google Scholar 

  176. Bonini N.M., Giasson B.I., Snaring the function of α-synuclein, Cell, 2005, 123, 359–361

    Article  PubMed  CAS  Google Scholar 

  177. Kim T.D., Paik S.R., Yang C.H., Kim J., Structural changes in α-synuclein affect its chaperone-like activity in vitro, Protein Sci., 2000, 9, 2489–2496

    Article  PubMed  CAS  Google Scholar 

  178. Souza J.M., Giasson B.I., Lee V.M., Ischiropoulos H., Chaperone-like activity of synucleins, FEBS Lett., 2000, 474, 116–119

    Article  PubMed  CAS  Google Scholar 

  179. Lee H.G., Zhu X., Takeda A., Perry G., Smith M.A., Emerging evidence for the neuroprotective role of α-synuclein, Exp. Neurol., 2006, 200, 1–7

    Article  PubMed  CAS  Google Scholar 

  180. Dawson-Scully K., Lin Y., Imad M., Zhang J., Marin L., Horne J.A., et al., Morphological and functional effects of altered cysteine string protein at the Drosophila larval neuromuscular junction, Synapse, 2007, 61, 1–16

    Article  PubMed  CAS  Google Scholar 

  181. Fernandez-Chacon R., Wolfel M., Nishimune H., Tabares L., Schmitz F., Castellano-Munoz M., et al., The synaptic vesicle protein CSPα prevents presynaptic degeneration, Neuron, 2004, 42, 237–251

    Article  PubMed  CAS  Google Scholar 

  182. Peng X., Tehranian R., Dietrich P., Stefanis L., Perez R.G., α-Synuclein activation of protein phosphatase 2A reduces tyrosine hydroxylase phosphorylation in dopaminergic cells, J. Cell Sci., 2005, 118, 3523–3530

    Article  PubMed  CAS  Google Scholar 

  183. Perez R.G., Waymire J.C., Lin E., Liu J.J., Guo F., Zigmond M.J., A role for α-synuclein in the regulation of dopamine biosynthesis, J. Neurosci., 2002, 22, 3090–3099

    PubMed  CAS  Google Scholar 

  184. Li Y.H., Gao N., Ye Y.W., Li X., Yu S., Yang H., et al., α-Synuclein functions as a negative regulator for expression of tyrosine hydroxylase, Acta Neurol. Belg., 2011, 111, 130–135

    PubMed  Google Scholar 

  185. Zhou C., Huang Y., Przedborski S., Oxidative stress in Parkinson’s disease: a mechanism of pathogenic and therapeutic significance, Ann. NY Acad. Sci., 2008, 1147, 93-104

    Google Scholar 

  186. Zhou C., Huang Y., Shao Y., May J., Prou D., Perier C., et al., The kinase domain of mitochondrial PINK1 faces the cytoplasm, Proc. Natl. Acad. Sci. USA, 2008, 105, 12022–12027

    Article  PubMed  CAS  Google Scholar 

  187. Winslow A.R., Rubinsztein D.C., The Parkinson disease protein α-synuclein inhibits autophagy, Autophagy, 2011, 7, 429–431

    Article  PubMed  Google Scholar 

  188. Halliday G.M., Ophof A., Broe M., Jensen P.H., Kettle E., Fedorow H., et al., α-Synuclein redistributes to neuromelanin lipid in the substantia nigra early in Parkinson’s disease, Brain, 2005, 128, 2654–2664

    Article  PubMed  Google Scholar 

  189. Iwata A., Maruyama M., Kanazawa I., Nukina N., α-Synuclein affects the MAPK pathway and accelerates cell death, J. Biol. Chem., 2001, 276, 45320–45329

    Article  PubMed  CAS  Google Scholar 

  190. Scherzer C.R., Grass J.A., Liao Z., Pepivani I., Zheng B., Eklund A.C., et al., GATA transcription factors directly regulate the Parkinson’s disease-linked gene α-synuclein, Proc. Natl. Acad. Sci. USA, 2008, 105, 10907–10912

    Article  PubMed  CAS  Google Scholar 

  191. Madine J., Doig A.J., Middleton D.A., A study of the regional effects of α-synuclein on the organization and stability of phospholipid bilayers, Biochemistry, 2006, 45, 5783–5792

    Article  PubMed  CAS  Google Scholar 

  192. Zhu M., Qin Z.J., Hu D., Munishkina L.A., Fink A.L., α-Synuclein can function as an antioxidant preventing oxidation of unsaturated lipid in vesicles, Biochemistry, 2006, 45, 8135–8142

    Article  PubMed  CAS  Google Scholar 

  193. Ferree A., Guillily M., Li H., Smith K., Takashima A., Squillace R., et al, Regulation of physiologic actions of LRRK2: Focus on autophagy, Neurodegener. Dis., 2012, 10, 238–241

    Article  PubMed  CAS  Google Scholar 

  194. Simunovic F., Yi M., Wang Y., Macey L., Brown L.T., Krichevsky A.M., et al., Gene expression profiling of substantia nigra dopamine neurons: further insights into Parkinson’s disease pathology, Brain, 2009, 132, 1795–1809

    Article  PubMed  Google Scholar 

  195. Pienaar I.S., Daniels W.M., Gotz J., Neuroproteomics as a promising tool in Parkinson’s disease research, J. Neural. Transm., 2008, 115, 1413–1430

    Article  PubMed  CAS  Google Scholar 

  196. Saiki S., Sato S., Hattori N., Molecular pathogenesis of Parkinson’s disease: update, J. Neurol. Neurosurg. Psychiatry, 2012, 83, 430–436

    Article  PubMed  Google Scholar 

  197. Gasser T., Hardy J., Mizuno Y., Milestones in PD genetics, Mov. Disord., 2011, 26, 1042–1048

    Article  PubMed  Google Scholar 

  198. Martin I., Dawson V.L., Dawson T.M., Recent advances in the genetics of Parkinson’s disease, Annu. Rev. Genomics Hum. Genet., 2011, 12, 301–325

    Article  PubMed  CAS  Google Scholar 

  199. Corti O., Lesage S., Brice A., What genetics tells us about the causes and mechanisms of Parkinson’s disease, Physiol. Rev., 2011, 91, 1161–1218

    Article  PubMed  CAS  Google Scholar 

  200. Ono K., Ikeda T., Takasaki J., Yamada M., Familial Parkinson disease mutations influence α-synuclein assembly, Neurobiol. Dis., 2011, 43, 715–724

    Article  PubMed  CAS  Google Scholar 

  201. Hakimi M., Selvanantham T., Swinton E., Padmore R.F., Tong Y., Kabbach G., et al., Parkinson’s disease-linked LRRK2 is expressed in circulating and tissue immune cells and upregulated following recognition of microbial structures, J. Neural. Transm., 2011, 118, 795–808

    Article  PubMed  CAS  Google Scholar 

  202. Bekris L.M., Mata I.F., Zabetian C.P., The genetics of Parkinson disease, J. Geriatr. Psychiatry Neurol., 2010, 23, 228–242

    Article  PubMed  Google Scholar 

  203. Hardy J., Genetic analysis of pathways to Parkinson disease, Neuron, 2010, 68, 201–206

    Article  PubMed  CAS  Google Scholar 

  204. Klein C., Schneider S.A., Lang A.E., Hereditary parkinsonism: Parkinson disease look-alikes—an algorithm for clinicians to “PARK” genes and beyond, Mov. Disord., 2009, 24, 2042–2058

    Article  PubMed  Google Scholar 

  205. Fujioka S., Wszolek Z.K., Update on genetics of parkinsonism, Neurodegener. Dis., 2012, 10, 257–260

    Article  PubMed  CAS  Google Scholar 

  206. Nuytemans K., Theuns J., Cruts M., Van Broeckhoven C., Genetic etiology of Parkinson disease associated with mutations in the SNCA, PARK2, PINK1, PARK7, and LRRK2 genes: a mutation update, Hum. Mutat., 2010, 31, 763–780

    Article  PubMed  CAS  Google Scholar 

  207. Shulman J.M., De Jager P.L., Feany M.B., Parkinson’s disease: genetics and pathogenesis, Annu. Rev. Pathol., 2011, 6, 193–222

    Article  PubMed  CAS  Google Scholar 

  208. Healy D.G., Falchi M., O’sullivan S.S., Bonifati V., Durr A., Bressman S., et al., Phenotype, genotype, and worldwide genetic penetrance of LRRK2-associated Parkinson’s disease: a case-control study, Lancet Neurol., 2008, 7, 583–590

    Article  PubMed  CAS  Google Scholar 

  209. Dachsel J.C., Farrer M.J., LRRK2 and Parkinson disease, Arch. Neurol., 2010, 67, 542–547

    Article  PubMed  Google Scholar 

  210. Haugarvoll K., Rademakers R., Kachergus J.M., Nuytemans K., Ross O.A., Gibson J.M., et al., LRRK2 R1441C parkinsonism is clinically similar to sporadic Parkinson disease, Neurology, 2008, 70, 1456–1460

    Article  PubMed  CAS  Google Scholar 

  211. Zimprich A., Biskup S., Leitner P., Lichtner P., Farrer M., Lincoln S., et al., Mutations in LRRK2 cause autosomal-dominant parkinsonism with pleomorphic pathology, Neuron, 2004, 44, 601–607

    Article  PubMed  CAS  Google Scholar 

  212. Poulopoulos M., Cortes E., Vonsattel J.P., Fahn S., Waters C., Cote L.J., et al., Clinical and pathological characteristics of LRRK2 G2019S patients with PD, J. Mol. Neurosci., 2012, 47, 139–143

    Article  PubMed  CAS  Google Scholar 

  213. Devine M.J., Lewis P.A., Emerging pathways in genetic Parkinson’s disease: tangles, Lewy bodies and LRRK2, FEBS J., 2008, 275, 5748–5757

    Article  PubMed  CAS  Google Scholar 

  214. Tong Y., Yamaguchi H., Giaime E., Boyle S., Kopan R., Kelleher R.J. 3rd, et al., Loss of leucine-rich repeat kinase 2 causes impairment of protein degradation pathways, accumulation of α-synuclein, and apoptotic cell death in aged mice, Proc. Natl. Acad. Sci. USA, 2010, 107, 9879–9884

    Article  PubMed  CAS  Google Scholar 

  215. Mamais A., Lewis P., Lees A., Bandopadhyay R., Biochemical and pathological characterisation of α-synuclein in LRRK2 associated Parkinson’s disease (abs.), Neuropathol. Appl. Neurobiol., 2012, 38(Suppl. 1), 40

    Google Scholar 

  216. Matsumine H., Saito M., Shimoda-Matsubayashi S., Tanaka H., Ishikawa A., Nakagawa-Hattori Y., et al., Localization of a gene for an autosomal recessive form of juvenile Parkinsonism to chromosome 6q25.2-27, Am. J. Hum. Genet., 1997, 60, 588–596

    PubMed  CAS  Google Scholar 

  217. Farrer M., Chan P., Chen R., Tan L., Lincoln S., Hernandez D., et al., Lewy bodies and parkinsonism in families with parkin mutations, Ann. Neurol., 2001, 50, 293–300

    Article  PubMed  CAS  Google Scholar 

  218. Lucking C.B., Durr A., Bonifati V., Vaughan J., De Michele G., Gasser T., et al., Association between early-onset Parkinson’s disease and mutations in the parkin gene, N. Engl. J. Med., 2000, 342, 1560–1567

    Article  PubMed  CAS  Google Scholar 

  219. Dawson T.M., Dawson V.L., The role of parkin in familial and sporadic Parkinson’s disease, Mov. Disord., 2010, 25Suppl. 1, S32–39

    Article  PubMed  Google Scholar 

  220. Shimura H., Schlossmacher M.G., Hattori N., Frosch M.P., Trockenbacher A., Schneider R., et al., Ubiquitination of a new form of α-synuclein by parkin from human brain: implications for Parkinson’s disease, Science, 2001, 293, 263–269

    Article  PubMed  CAS  Google Scholar 

  221. Kay D.M., Moran D., Moses L., Poorkaj P., Zabetian C.P., Nutt J., et al., Heterozygous parkin point mutations are as common in control subjects as in Parkinson’s patients, Ann. Neurol., 2007, 61, 47–54

    Article  PubMed  CAS  Google Scholar 

  222. Crosiers D., Theuns J., Cras P., Van Broeckhoven C., Parkinson disease: insights in clinical, genetic and pathological features of monogenic disease subtypes, J. Chem. Neuroanat., 2011, 42, 131–141

    Article  PubMed  CAS  Google Scholar 

  223. Samaranch L., Lorenzo-Betancor O., Arbelo J.M., Ferrer I., Lorenzo E., Irigoyen J., et al., PINK1-linked parkinsonism is associated with Lewy body pathology, Brain, 2010, 133, 1128–1142

    Article  PubMed  Google Scholar 

  224. Yasuda T., Mochizuki H., The regulatory role of α-synuclein and parkin in neuronal cell apoptosis; possible implications for the pathogenesis of Parkinson’s disease, Apoptosis, 2010, 15, 1312–1321

    Article  PubMed  CAS  Google Scholar 

  225. Narendra D., Tanaka A., Suen D.F., Youle R.J., Parkin is recruited selectively to impaired mitochondria and promotes their autophagy, J. Cell Biol., 2008, 183, 795–803

    Article  PubMed  CAS  Google Scholar 

  226. Tanaka K., Suzuki T., Hattori N., Mizuno Y., Ubiquitin, proteasome and parkin, Biochim. Biophys. Acta, 2004, 1695, 235–247

    Article  PubMed  CAS  Google Scholar 

  227. Thomas B., Parkinson’s disease: from molecular pathways in disease to therapeutic approaches, Antioxid. Redox Signal., 2009, 11, 2077–2082

    Article  PubMed  CAS  Google Scholar 

  228. Bonifati V., Rizzu P., van Baren M.J., Schaap O., Breedveld G.J., Krieger E., et al., Mutations in the DJ-1 gene associated with autosomal recessive early-onset parkinsonism, Science, 2003, 299, 256–259

    Article  PubMed  CAS  Google Scholar 

  229. Lee S.J., Kim S.J., Kim I.K., Ko J., Jeong C.S., Kim G.H., et al., Crystal structures of human DJ-1 and Escherichia coli Hsp31, which share an evolutionarily conserved domain, J. Biol. Chem., 2003, 278, 44552–44559

    Article  PubMed  CAS  Google Scholar 

  230. Kim R.H., Peters M., Jang Y., Shi W., Pintilie M., Fletcher G.C., et al., DJ-1, a novel regulator of the tumor suppressor PTEN, Cancer Cell, 2005, 7, 263–273

    Article  PubMed  CAS  Google Scholar 

  231. Niki T., Takahashi-Niki K., Taira T., Iguchi-Ariga S.M., Ariga H., DJBP: a novel DJ-1-binding protein, negatively regulates the androgen receptor by recruiting histone deacetylase complex, and DJ-1 antagonizes this inhibition by abrogation of this complex, Mol. Cancer Res., 2003, 1, 247–261

    PubMed  CAS  Google Scholar 

  232. Canet-Aviles R.M., Wilson M.A., Miller D.W., Ahmad R., McLendon C., Bandyopadhyay S., et al., The Parkinson’s disease protein DJ-1 is neuroprotective due to cysteine-sulfinic acid-driven mitochondrial localization, Proc. Natl. Acad. Sci. USA, 2004, 101, 9103–9108

    Article  PubMed  CAS  Google Scholar 

  233. Taira T., Saito Y., Niki T., Iguchi-Ariga S.M., Takahashi K., Ariga H., DJ-1 has a role in antioxidative stress to prevent cell death, EMBO Rep., 2004, 5, 213–218

    Article  PubMed  CAS  Google Scholar 

  234. Lev N., Roncevic D., Ickowicz D., Melamed E., Offen D., Role of DJ-1 in Parkinson’s disease, J. Mol. Neurosci., 2006, 29, 215–225

    Article  PubMed  CAS  Google Scholar 

  235. Yokota T., Sugawara K., Ito K., Takahashi R., Ariga H., Mizusawa H., Down regulation of DJ-1 enhances cell death by oxidative stress, ER stress, and proteasome inhibition, Biochem. Biophys. Res. Commun., 2003, 312, 1342–1348

    Article  PubMed  CAS  Google Scholar 

  236. Takahashi-Niki K., Niki T., Taira T., Iguchi-Ariga S.M., Ariga H., Reduced anti-oxidative stress activities of DJ-1 mutants found in Parkinson’s disease patients, Biochem. Biophys. Res. Commun., 2004, 320, 389–397

    Article  PubMed  CAS  Google Scholar 

  237. Olzmann J.A., Bordelon J.R., Muly E.C., Rees H.D., Levey A.I., Li L., et al., Selective enrichment of DJ-1 protein in primate striatal neuronal processes: implications for Parkinson’s disease, J. Comp. Neurol., 2007, 500, 585–599

    Article  PubMed  CAS  Google Scholar 

  238. Usami Y., Hatano T., Imai S., Kubo S., Sato S., Saiki S., et al., DJ-1 associates with synaptic membranes, Neurobiol. Dis., 2011, 43, 651–662

    Article  PubMed  CAS  Google Scholar 

  239. Stenmark H., Olkkonen V.M., The Rab GTPase family, Genome Biol., 2001, 2, REVIEWS3007, epub 2001 Apr 27

    Article  PubMed  CAS  Google Scholar 

  240. Geisler S., Holmstrom K.M., Skujat D., Fiesel F.C., Rothfuss O.C., Kahle P.J., et al., PINK1/Parkin-mediated mitophagy is dependent on VDAC1 and p62/SQSTM1, Nat. Cell Biol., 2010, 12, 119–131

    Article  PubMed  CAS  Google Scholar 

  241. Narendra D., Kane L.A., Hauser D.N., Fearnley I.M., Youle R.J., p62/SQSTM1 is required for Parkin-induced mitochondrial clustering but not mitophagy; VDAC1 is dispensable for both, Autophagy, 2010, 6, 1090–1106

    Article  PubMed  CAS  Google Scholar 

  242. Gegg M.E., Cooper J.M., Chau K.Y., Rojo M., Schapira A.H., Taanman J.W., Mitofusin 1 and mitofusin 2 are ubiquitinated in a PINK1/parkin-dependent manner upon induction of mitophagy, Hum. Mol. Genet., 2010, 19, 4861–4870

    Article  PubMed  CAS  Google Scholar 

  243. Behrends C., Harper J.W., Constructing and decoding unconventional ubiquitin chains, Nat. Struct. Mol. Biol., 2011, 18, 520–528

    Article  PubMed  CAS  Google Scholar 

  244. Komander D., The emerging complexity of protein ubiquitination, Biochem. Soc. Trans., 2009, 37, 937–953

    Article  PubMed  CAS  Google Scholar 

  245. Abrahante J.E., Daul A.L., Li M., Volk M.L., Tennessen J.M., Miller E.A., et al., The Caenorhabditis elegans hunchback-like gene lin-57/hbl-1 controls developmental time and is regulated by microRNAs, Dev. Cell, 2003, 4, 625–637

    Article  PubMed  CAS  Google Scholar 

  246. Davison E.J., Pennington K., Hung C.C., Peng J., Rafiq R., Ostareck-Lederer A., et al., Proteomic analysis of increased Parkin expression and its interactants provides evidence for a role in modulation of mitochondrial function, Proteomics, 2009, 9, 4284–4297

    Article  PubMed  CAS  Google Scholar 

  247. Berger A.K., Cortese G.P., Amodeo K.D., Weihofen A., Letai A., LaVoie M.J., Parkin selectively alters the intrinsic threshold for mitochondrial cytochrome c release, Hum. Mol. Genet., 2009, 18, 4317–4328

    Article  PubMed  CAS  Google Scholar 

  248. Park J., Lee G., Chung J., The PINK1-Parkin pathway is involved in the regulation of mitochondrial remodeling process, Biochem. Biophys. Res. Commun., 2009, 378, 518–523

    Article  PubMed  CAS  Google Scholar 

  249. Van Laar V.S., Arnold B., Cassady S.J., Chu C.T., Burton E.A., Berman S.B., Bioenergetics of neurons inhibit the translocation response of Parkin following rapid mitochondrial depolarization, Hum. Mol. Genet., 2011, 20, 927–940

    Article  PubMed  CAS  Google Scholar 

  250. Silvestri L., Caputo V., Bellacchio E., Atorino L., Dallapiccola B., Valente E.M., et al., Mitochondrial import and enzymatic activity of PINK1 mutants associated to recessive parkinsonism, Hum. Mol. Genet., 2005, 14, 3477–3492

    Article  PubMed  CAS  Google Scholar 

  251. Beilina A., Van Der Brug M., Ahmad R., Kesavapany S., Miller D.W., Petsko G.A., et al., Mutations in PTEN-induced putative kinase 1 associated with recessive parkinsonism have differential effects on protein stability, Proc. Natl. Acad. Sci. USA, 2005, 102, 5703–5708

    Article  PubMed  CAS  Google Scholar 

  252. Wang H.L., Chou A.H., Wu A.S., Chen S.Y., Weng Y.H., Kao Y.C., et al., PARK6 PINK1 mutants are defective in maintaining mitochondrial membrane potential and inhibiting ROS formation of substantia nigra dopaminergic neurons, Biochim. Biophys. Acta, 2011, 1812, 674–684

    PubMed  CAS  Google Scholar 

  253. Yang J.L., Weissman L., Bohr V.A., Mattson M.P., Mitochondrial DNA damage and repair in neurodegenerative disorders, DNA Repair (Amst), 2008, 7, 1110–1120

    Article  CAS  Google Scholar 

  254. Murata H., Sakaguchi M., Jin Y., Sakaguchi Y., Futami J., Yamada H., et al., A new cytosolic pathway from a Parkinson disease-associated kinase, BRPK/PINK1: activation of AKT via mTORC2, J. Biol. Chem., 2011, 286, 7182–7189

    Article  PubMed  CAS  Google Scholar 

  255. Amo T., Sato S., Saiki S., Wolf A.M., Toyomizu M., Gautier C.A., et al., Mitochondrial membrane potential decrease caused by loss of PINK1 is not due to proton leak, but to respiratory chain defects, Neurobiol. Dis., 2011, 41, 111–118

    Article  PubMed  CAS  Google Scholar 

  256. Bueler H., Mitochondrial dynamics, cell death and the pathogenesis of Parkinson’s disease, Apoptosis, 2010, 15, 1336–1353

    Article  PubMed  CAS  Google Scholar 

  257. Gegg M.E., Cooper J.M., Schapira A.H., Taanman J.W., Silencing of PINK1 expression affects mitochondrial DNA and oxidative phosphorylation in dopaminergic cells, PLoS One, 2009, 4, e4756

    Article  PubMed  CAS  Google Scholar 

  258. Gandhi S., Wood-Kaczmar A., Yao Z., Plun-Favreau H., Deas E., Klupsch K., et al., PINK1-associated Parkinson’s disease is caused by neuronal vulnerability to calcium-induced cell death, Mol. Cell, 2009, 33, 627–638

    Article  PubMed  CAS  Google Scholar 

  259. Wang H., Song P., Du L., Tian W., Yue W., Liu M., et al., Parkin ubiquitinates Drp1 for proteasome-dependent degradation: implication of dysregulated mitochondrial dynamics in Parkinson disease, J. Biol. Chem., 2011, 286, 11649–11658

    Article  PubMed  CAS  Google Scholar 

  260. Weihofen A., Thomas K.J., Ostaszewski B.L., Cookson M.R., Selkoe D.J., Pink1 forms a multiprotein complex with Miro and Milton, linking Pink1 function to mitochondrial trafficking, Biochemistry, 2009, 48, 2045–2052

    Article  PubMed  CAS  Google Scholar 

  261. Wang X., Winter D., Ashrafi G., Schlehe J., Wong Y.L., Selkoe D., et al., PINK1 and Parkin target Miro for phosphorylation and degradation to arrest mitochondrial motility, Cell, 2011, 147, 893–906

    Article  PubMed  CAS  Google Scholar 

  262. Clark I.E., Dodson M.W., Jiang C., Cao J.H., Huh J.R., Seol J.H., et al., Drosophila pink1 is required for mitochondrial function and interacts genetically with parkin, Nature, 2006, 441, 1162–1166

    Article  PubMed  CAS  Google Scholar 

  263. Dodson M.W., Guo M., Pink1, Parkin, DJ-1 and mitochondrial dysfunction in Parkinson’s disease, Curr. Opin. Neurobiol., 2007, 17, 331–337

    Article  PubMed  CAS  Google Scholar 

  264. Narendra D.P., Jin S.M., Tanaka A., Suen D.F., Gautier C.A., Shen J., et al., PINK1 is selectively stabilized on impaired mitochondria to activate Parkin, PLoS Biol., 2010, 8, e1000298

    Article  PubMed  CAS  Google Scholar 

  265. Abramov A.Y., Gegg M., Grunewald A., Wood N.W., Klein C., Schapira A.H., Bioenergetic consequences of PINK1 mutations in Parkinson disease, PLoS One, 2011, 6, e25622

    Article  PubMed  CAS  Google Scholar 

  266. Dagda R.K., Cherra S.J., 3rd, Kulich S.M., Tandon A., Park D., Chu C.T., Loss of PINK1 function promotes mitophagy through effects on oxidative stress and mitochondrial fission, J. Biol. Chem., 2009, 284, 13843–13855

    Article  PubMed  CAS  Google Scholar 

  267. Lutz A.K., Exner N., Fett M.E., Schlehe J.S., Kloos K., Lammermann K., et al., Loss of parkin or PINK1 function increases Drp1-dependent mitochondrial fragmentation, J. Biol. Chem., 2009, 284, 22938–22951

    Article  PubMed  CAS  Google Scholar 

  268. Xilouri M., Stefanis L., Autophagic pathways in Parkinson disease and related disorders, Expert Rev. Mol. Med., 2011, 13, e8

    Article  PubMed  CAS  Google Scholar 

  269. Oliveras Salvá M., Van Rompuy A., Heeman B., Van Den Haute C., Baekelandt V., Loss-of-function rodent models for Parkin and PINK1, J. Parkinsons Dis., 2011, 1, 229–251

    Google Scholar 

  270. Heeman B., Van den Haute C., Aelvoet S.A., Valsecchi F., Rodenburg R.J., Reumers V., et al., Depletion of PINK1 affects mitochondrial metabolism, calcium homeostasis and energy maintenance, J. Cell Sci., 2011, 124, 1115–1125

    Article  PubMed  CAS  Google Scholar 

  271. Oettinghaus B., Licci M., Scorrano L., Frank S., Less than perfect divorces: dysregulated mitochondrial fission and neurodegeneration, Acta Neuropathol., 2012, 123, 189–203

    Article  PubMed  CAS  Google Scholar 

  272. Gillardon F., Leucine-rich repeat kinase 2 phosphorylates brain tubulin-β isoforms and modulates microtubule stability — a point of convergence in parkinsonian neurodegeneration?, J. Neurochem., 2009, 110, 1514–1522

    Article  PubMed  CAS  Google Scholar 

  273. Alim M.A., Ma Q.L., Takeda K., Aizawa T., Matsubara M., Nakamura M., et al., Demonstration of a role for α-synuclein as a functional microtubule-associated protein, J. Alzheimers Dis., 2004, 6, 435–442

    PubMed  Google Scholar 

  274. Chen L., Periquet M., Wang X., Negro A., McLean P.J., Hyman B.T., et al., Tyrosine and serine phosphorylation of α-synuclein have opposing effects on neurotoxicity and soluble oligomer formation, J. Clin. Invest., 2009, 119, 3257–3265

    Article  PubMed  CAS  Google Scholar 

  275. DiMauro S., Schon E.A., Mitochondrial disorders in the nervous system, Annu. Rev. Neurosci., 2008, 31, 91–123

    Article  PubMed  CAS  Google Scholar 

  276. Trabzuni D., Ryten M., Walker R., Smith C., Ramasamy A., Weale M., et al., The role of genetic variation in LRRK2 splicing in multiple control human brain regions (abs.), Neuropathol. Appl. Neurobiol., 2012, 38(Suppl. 1), 21

    Google Scholar 

  277. Piccoli G., Condliffe S.B., Bauer M., Giesert F., Boldt K., De Astis S., et al., LRRK2 controls synaptic vesicle storage and mobilization within the recycling pool, J. Neurosci., 2011, 31, 2225–2237

    Article  PubMed  CAS  Google Scholar 

  278. Alegre-Abarrategui J., Ansorge O., Esiri M., Wade-Martins R., LRRK2 is a component of granular α-synuclein pathology in the brainstem of Parkinson’s disease, Neuropathol. Appl. Neurobiol., 2008, 34, 272–283

    Article  PubMed  CAS  Google Scholar 

  279. Lee B.D., Shin J.H., VanKampen J., Petrucelli L., West A.B., Ko H.S., et al., Inhibitors of leucine-rich repeat kinase-2 protect against models of Parkinson’s disease, Nat. Med., 2010, 16, 998–1000

    Article  PubMed  CAS  Google Scholar 

  280. Doyle K.M., Kennedy D., Gorman A.M., Gupta S., Healy S.J., Samali A., Unfolded proteins and endoplasmic reticulum stress in neurodegenerative disorders, J. Cell. Mol. Med., 2011, 15, 2025–2039

    Article  PubMed  CAS  Google Scholar 

  281. Polymeropoulos M.H., Lavedan C., Leroy E., Ide S.E., Dehejia A., Dutra A., et al., Mutation in the α-synuclein gene identified in families with Parkinson’s disease, Science, 1997, 276, 2045–2047

    Article  PubMed  CAS  Google Scholar 

  282. Athanassiadou A., Voutsinas G., Psiouri L., Leroy E., Polymeropoulos M.H., Ilias A., et al., Genetic analysis of families with Parkinson disease that carry the Ala53Thr mutation in the gene encoding α-synuclein, Am. J. Hum. Genet., 1999, 65, 555–558

    Article  PubMed  CAS  Google Scholar 

  283. Markopoulou K., Wszolek Z.K., Pfeiffer R.F., Chase B.A., Reduced expression of the G209A α-synuclein allele in familial Parkinsonism, Ann. Neurol., 1999, 46, 374–381

    Article  PubMed  CAS  Google Scholar 

  284. Papadimitriou A., Veletza V., Hadjigeorgiou G.M., Patrikiou A., Hirano M., Anastasopoulos I., Mutated α-synuclein gene in two Greek kindreds with familial PD: incomplete penetrance?, Neurology, 1999, 52, 651–654

    Article  PubMed  CAS  Google Scholar 

  285. Spira P.J., Sharpe D.M., Halliday G., Cavanagh J., Nicholson G.A., Clinical and pathological features of a Parkinsonian syndrome in a family with an Ala53Thr α-synuclein mutation, Ann. Neurol., 2001, 49, 313–319

    Article  PubMed  CAS  Google Scholar 

  286. Markopoulou K., Dickson D.W., McComb R.D., Wszolek Z.K., Katechalidou L., Avery L., et al., Clinical, neuropathological and genotypic variability in SNCA A53T familial Parkinson’s disease. Variability in familial Parkinson’s disease, Acta Neuropathol., 2008, 116, 25–35

    Article  PubMed  CAS  Google Scholar 

  287. Morfis L., Cordato D.J., Dementia with Lewy bodies in an elderly Greek male due to α-synuclein gene mutation, J. Clin. Neurosci., 2006, 13, 942–944

    Article  PubMed  CAS  Google Scholar 

  288. Yamaguchi K., Cochran E.J., Murrell J.R., Polymeropoulos M.H., Shannon K.M., Crowther R.A., et al., Abundant neuritic inclusions and microvacuolar changes in a case of diffuse Lewy body disease with the A53T mutation in the α-synuclein gene, Acta Neuropathol., 2005, 110, 298–305

    Article  PubMed  Google Scholar 

  289. Kruger R., Kuhn W., Muller T., Woitalla D., Graeber M., Kosel S., et al., Ala30Pro mutation in the gene encoding α-synuclein in Parkinson’s disease, Nat. Genet., 1998, 18, 106–108

    Article  PubMed  CAS  Google Scholar 

  290. Seidel K., Schols L., Nuber S., Petrasch-Parwez E., Gierga K., Wszolek Z., et al., First appraisal of brain pathology owing to A30P mutant α-synuclein, Ann. Neurol., 2010, 67, 684–689

    Article  PubMed  CAS  Google Scholar 

  291. Zarranz J.J., Alegre J., Gomez-Esteban J.C., Lezcano E., Ros R., Ampuero I., et al., The new mutation, E46K, of α-synuclein causes Parkinson and Lewy body dementia, Ann. Neurol., 2004, 55, 164–173

    Article  PubMed  CAS  Google Scholar 

  292. Choi W., Zibaee S., Jakes R., Serpell L.C., Davletov B., Crowther R.A., et al., Mutation E46K increases phospholipid binding and assembly into filaments of human α-synuclein, FEBS Lett., 2004, 576, 363–368

    Article  PubMed  CAS  Google Scholar 

  293. Fredenburg R.A., Rospigliosi C., Meray R.K., Kessler J.C., Lashuel H.A., Eliezer D., et al., The impact of the E46K mutation on the properties of α-synuclein in its monomeric and oligomeric states, Biochemistry, 2007, 46, 7107–7118

    Article  PubMed  CAS  Google Scholar 

  294. Tsigelny I.F., Sharikov Y., Wrasidlo W., Gonzalez T., Desplats P.A., Crews L., et al., Role of α-synuclein penetration into the membrane in the mechanisms of oligomer pore formation, FEBS J., 2012, in print, doi: 10.1111/j.1742-4658.2012.08489.x

  295. Jo E., Fuller N., Rand R.P., St George-Hyslop P., Fraser P.E., Defective membrane interactions of familial Parkinson’s disease mutant A30P α-synuclein, J. Mol. Biol., 2002, 315, 799–807

    Article  PubMed  CAS  Google Scholar 

  296. Lewis K.A., Yaeger A., DeMartino G.N., Thomas P.J., Accelerated formation of α-synuclein oligomers by concerted action of the 20S proteasome and familial Parkinson mutations, J. Bioenerg. Biomembr., 2010, 42, 85–95

    Article  PubMed  CAS  Google Scholar 

  297. Martin L.J., Pan Y., Price A.C., Sterling W., Copeland N.G., Jenkins N.A., et al., Parkinson’s disease α-synuclein transgenic mice develop neuronal mitochondrial degeneration and cell death, J. Neurosci., 2006, 26, 41–50

    Article  PubMed  CAS  Google Scholar 

  298. Choubey V., Safiulina D., Vaarmann A., Cagalinec M., Wareski P., Kuum M., et al., Mutant A53T α-synuclein induces neuronal death by increasing mitochondrial autophagy, J. Biol. Chem., 2011, 286, 10814–10824

    Article  PubMed  CAS  Google Scholar 

  299. Park M.J., Cheon S.M., Bae H.R., Kim S.H., Kim J.W., Elevated Levels of α-Synuclein Oligomer in the Cerebrospinal Fluid of Drug-Naive Patients with Parkinson’s Disease, J. Clin. Neurol., 2011, 7, 215–222

    Article  PubMed  Google Scholar 

  300. Visanji N.P., Wislet-Gendebien S., Oschipok L.W., Zhang G., Aubert I., Fraser P.E., et al., Effect of Ser-129 phosphorylation on interaction of α-synuclein with synaptic and cellular membranes, J. Biol. Chem., 2011, 286, 35863–35873

    Article  PubMed  CAS  Google Scholar 

  301. Sato H., Arawaka S., Hara S., Fukushima S., Koga K., Koyama S., et al., Authentically phosphorylated α-synuclein at Ser129 accelerates neurodegeneration in a rat model of familial Parkinson’s disease, J. Neurosci., 2011, 31, 16884–16894

    Article  PubMed  CAS  Google Scholar 

  302. Chartier-Harlin M.C., Kachergus J., Roumier C., Mouroux V., Douay X., Lincoln S., et al., α-Synuclein locus duplication as a cause of familial Parkinson’s disease, Lancet, 2004, 364, 1167–1169

    Article  PubMed  CAS  Google Scholar 

  303. Farrer M., Kachergus J., Forno L., Lincoln S., Wang D.S., Hulihan M., et al., Comparison of kindreds with parkinsonism and α-synuclein genomic multiplications, Ann. Neurol., 2004, 55, 174–179

    Article  PubMed  CAS  Google Scholar 

  304. Dorval V., Hebert S.S., LRRK2 in transcription and translation regulation: relevance for Parkinson’s disease, Front. Neurol., 2012, 3, 12, doi: 10.3389/fneur.2012.00012

    PubMed  CAS  Google Scholar 

  305. Santpere G., Ferrer I., LRRK2 and neurodegeneration, Acta Neuropathol., 2009, 117, 227–246

    Article  PubMed  CAS  Google Scholar 

  306. Cookson M.R., The role of leucine-rich repeat kinase 2 (LRRK2) in Parkinson’s disease, Nat. Rev. Neurosci., 2010, 11, 791–797

    Article  PubMed  CAS  Google Scholar 

  307. Velayati A., Yu W.H., Sidransky E., The role of glucocerebrosidase mutations in Parkinson disease and Lewy body disorders, Curr. Neurol. Neurosci. Rep., 2010, 10, 190–198

    Article  PubMed  CAS  Google Scholar 

  308. Lin X., Parisiadou L., Gu X.L., Wang L., Shim H., Sun L., et al., Leucinerich repeat kinase 2 regulates the progression of neuropathology induced by Parkinson’s-disease-related mutant α-synuclein, Neuron, 2009, 64, 807–827

    Article  PubMed  CAS  Google Scholar 

  309. Nalls M.A., Plagnol V., Hernandez D.G., Sharma M., Sheerin U.M., Saad M., et al., Imputation of sequence variants for identification of genetic risks for Parkinson’s disease: a meta-analysis of genome-wide association studies, Lancet, 2011, 377, 641–649

    Article  PubMed  CAS  Google Scholar 

  310. Simon-Sanchez J., Schulte C., Bras J.M., Sharma M., Gibbs J.R., Berg D., et al., Genome-wide association study reveals genetic risk underlying Parkinson’s disease, Nat. Genet., 2009, 41, 1308–1312

    Article  PubMed  CAS  Google Scholar 

  311. International Parkinson Disease Genomics Consortium, Nalls M.A., Plagnol V., Hernandez D.G., Sharma M., Sheerin U.M., et al., Imputation of sequence variants for identification of genetic risks for Parkinson’s disease: a meta-analysis of genome-wide association studies, Lancet, 2011, 377, 641–649

    Article  PubMed  CAS  Google Scholar 

  312. Zheng B., Liao Z., Locascio J.J., Lesniak K.A., Roderick S.S., Watt M.L., et al., PGC-1α, a potential therapeutic target for early intervention in Parkinson’s disease, Sci. Transl. Med., 2010, 2, 52ra73

    Article  PubMed  CAS  Google Scholar 

  313. Liu X., Cheng R., Verbitsky M., Kisselev S., Browne A., Mejia-Sanatana H., et al., Genome-wide association study identifies candidate genes for Parkinson’s disease in an Ashkenazi Jewish population, BMC Med. Genet., 2011, 12, 104

    Article  PubMed  CAS  Google Scholar 

  314. Pankratz N., Beecham G.W., Destefano A.L., Dawson T.M., Doheny K.F., Factor S.A., et al., Meta-analysis of Parkinson’s Disease: Identification of a novel locus, RIT2, Ann. Neurol., 2012, 71, 370–384

    Article  PubMed  CAS  Google Scholar 

  315. Taschenberger G., Garrido M., Tereshchenko Y., Bahr M., Zweckstetter M., Kügler S., Aggregation of α-synuclein promotes progressive in vivo neurotoxicity in adult rat dopaminergic neurons, Acta Neuropathol., 2012, 123, 671–683

    Article  PubMed  CAS  Google Scholar 

  316. Cronin K.D., Ge D., Manninger P., Linnertz C., Rossoshek A., Orrison B.M., et al., Expansion of the Parkinson disease-associated SNCA-Rep1 allele upregulates human α-synuclein in transgenic mouse brain, Hum. Mol. Genet., 2009, 18, 3274–3285

    Article  PubMed  CAS  Google Scholar 

  317. Linnertz C., Saucier L., Ge D., Cronin K.D., Burke J.R., Browndyke J.N., et al., Genetic regulation of α-synuclein mRNA expression in various human brain tissues, PLoS One, 2009, 4, e7480

    Article  PubMed  CAS  Google Scholar 

  318. Chiba-Falek O., Nussbaum R.L., Effect of allelic variation at the NACP-Rep1 repeat upstream of the α-synuclein gene (SNCA) on transcription in a cell culture luciferase reporter system, Hum. Mol. Genet., 2001, 10, 3101–3109

    Article  PubMed  CAS  Google Scholar 

  319. Pals P., Lincoln S., Manning J., Heckman M., Skipper L., Hulihan M., et al., α-Synuclein promoter confers susceptibility to Parkinson’s disease, Ann. Neurol., 2004, 56, 591–595

    Article  PubMed  CAS  Google Scholar 

  320. Goldman S.M., Kamel F., Ross G.W., Jewell S.A., Bhudhikanok G.S., Umbach D., et al., Head injury, α-synuclein Rep1, and Parkinson’s disease, Ann. Neurol., 2012, 71, 40–48

    Article  PubMed  CAS  Google Scholar 

  321. Farrer M., Maraganore D.M., Lockhart P., Singleton A., Lesnick T.G., de Andrade M., et al., α-Synuclein gene haplotypes are associated with Parkinson’s disease, Hum. Mol. Genet., 2001, 10, 1847–1851

    Article  PubMed  CAS  Google Scholar 

  322. Tan E.K., Matsuura T., Nagamitsu S., Khajavi M., Jankovic J., Ashizawa T., Polymorphism of NACP-Rep1 in Parkinson’s disease: an etiologic link with essential tremor?, Neurology, 2000, 54, 1195–1198

    Article  PubMed  CAS  Google Scholar 

  323. Maraganore D.M., de Andrade M., Elbaz A., Farrer M.J., Ioannidis J.P., Kruger R., et al., Collaborative analysis of α-synuclein gene promoter variability and Parkinson disease, JAMA, 2006, 296, 661–670

    Article  CAS  PubMed  Google Scholar 

  324. Kay D.M., Factor S.A., Samii A., Higgins D.S., Griffith A., Roberts J.W., et al., Genetic association between α-synuclein and idiopathic Parkinson’s disease, Am. J. Med. Genet. B Neuropsychiatr. Genet., 2008, 147B, 1222–1230

    Article  PubMed  Google Scholar 

  325. Krüger R., Vieira-Saecker A.M., Kuhn W., Berg D., Müller T., Kuhnl N., et al., Increased susceptibility to sporadic Parkinson’s disease by a certain combined α-synuclein/apolipoprotein E genotype, Ann. Neurol., 1999, 45, 611–617

    Article  PubMed  Google Scholar 

  326. Mata I.F., Shi M., Agarwal P., Chung K.A., Edwards K.L., Factor S.A., et al., SNCA variant associated with Parkinson disease and plasma α-synuclein level, Arch. Neurol., 2010, 67, 1350–1356

    Article  PubMed  Google Scholar 

  327. Nishioka K., Wider C., Vilarino-Guell C., Soto-Ortolaza A.I., Lincoln S.J., Kachergus J.M., et al., Association of α-, α-, and α-Synuclein with diffuse lewy body disease, Arch. Neurol., 2010, 67, 970–975

    Article  PubMed  Google Scholar 

  328. Bogaerts V., Engelborghs S., Kumar-Singh S., Goossens D., Pickut B., van der Zee J., et al., A novel locus for dementia with Lewy bodies: a clinically and genetically heterogeneous disorder, Brain, 2007, 130, 2277–2291

    Article  PubMed  Google Scholar 

  329. Meeus B., Nuytemans K., Crosiers D., Engelborghs S., Peeters K., Mattheijssens M., et al., Comprehensive genetic and mutation analysis of familial dementia with Lewy bodies linked to 2q35-q36, J. Alzheimers Dis., 2010, 20, 197–205

    PubMed  CAS  Google Scholar 

  330. Stemberger S., Scholz S.W., Singleton A.B., Wenning G.K., Genetic players in multiple system atrophy: unfolding the nature of the beast, Neurobiol. Aging, 2011, 32, 1924 e1925–1914

    Article  CAS  Google Scholar 

  331. Ahmed Z., Asi Y.T., Sailer A., Lees A.J., Houlden H., Revesz T., et al., The neuropathology, pathophysiology and genetics of multiple system atrophy, Neuropathol. Appl. Neurobiol., 2012, 38, 4–24

    Article  PubMed  CAS  Google Scholar 

  332. Bucciantini M., Giannoni E., Chiti F., Baroni F., Formigli L., Zurdo J., et al., Inherent toxicity of aggregates implies a common mechanism for protein misfolding diseases, Nature, 2002, 416, 507–511

    Article  PubMed  CAS  Google Scholar 

  333. Levine B., Kroemer G., Autophagy in the pathogenesis of disease, Cell, 2008, 132, 27–42

    Article  PubMed  CAS  Google Scholar 

  334. Gorbatyuk M.S., Shabashvili A., Chen W., Meyers C., Sullivan L.F., Salganik M., et al., Glucose regulated protein 78 diminishes α-Synuclein neurotoxicity in a rat model of Parkinson disease, Mol. Ther., 2012, in press, doi: 10.1038/mt.2012.1028

  335. Mak S.K., McCormack A.L., Manning-Bog A.B., Cuervo A.M., Di Monte D.A., Lysosomal degradation of α-synuclein in vivo, J. Biol. Chem., 2010, 285, 13621–13629

    Article  PubMed  CAS  Google Scholar 

  336. McNaught K.S., Belizaire R., Isacson O., Jenner P., Olanow C.W., Altered proteasomal function in sporadic Parkinson’s disease, Exp. Neurol., 2003, 179, 38–46

    Article  PubMed  CAS  Google Scholar 

  337. Lindersson E., Beedholm R., Hojrup P., Moos T., Gai W., Hendil K.B., et al., Proteasomal inhibition by α-synuclein filaments and oligomers, J. Biol. Chem., 2004, 279, 12924–12934

    Article  PubMed  CAS  Google Scholar 

  338. Emmanouilidou E., Elenis D., Papasilekas T., Stranjalis G., Gerozissis K., Ioannou P.C., et al., Assessment of α-synuclein secretion in mouse and human brain parenchyma, PLoS One, 2011, 6, e22225

    Article  PubMed  CAS  Google Scholar 

  339. Devi L., Raghavendran V., Prabhu B.M., Avadhani N.G., Anandatheerthavarada H.K., Mitochondrial import and accumulation of α-synuclein impair complex I in human dopaminergic neuronal cultures and Parkinson disease brain, J. Biol. Chem., 2008, 283, 9089–9100

    Article  PubMed  CAS  Google Scholar 

  340. Tong J., Wong H., Guttman M., Ang L.C., Forno L.S., Shimadzu M., et al., Brain α-synuclein accumulation in multiple system atrophy, Parkinson’s disease and progressive supranuclear palsy: a comparative investigation, Brain, 2010, 133, 172–188

    Article  PubMed  Google Scholar 

  341. Braak H., Del Tredici K., Rub U., de Vos R.A., Jansen Steur E.N., Braak E., Staging of brain pathology related to sporadic Parkinson’s disease, Neurobiol. Aging, 2003, 24, 197–211

    Article  PubMed  Google Scholar 

  342. Braak H., Sastre M., Bohl J.R., de Vos R.A., Del Tredici K., Parkinson’s disease: lesions in dorsal horn layer I, involvement of parasympathetic and sympathetic pre- and postganglionic neurons, Acta Neuropathol., 2007, 113, 421–429

    Article  PubMed  Google Scholar 

  343. Mori F., Tanji K., Zhang H., Kakita A., Takahashi H., Wakabayashi K., α-Synuclein pathology in the neostriatum in Parkinson’s disease, Acta Neuropathol., 2008, 115, 453–459

    Article  PubMed  CAS  Google Scholar 

  344. Wills J., Jones J., Haggerty T., Duka V., Joyce J.N., Sidhu A., Elevated tauopathy and α-synuclein pathology in postmortem Parkinson’s disease brains with and without dementia, Exp. Neurol., 2010, 225, 210–218

    Article  PubMed  CAS  Google Scholar 

  345. Baba M., Nakajo S., Tu P.H., Tomita T., Nakaya K., Lee V.M., et al., Aggregation of α-synuclein in Lewy bodies of sporadic Parkinson’s disease and dementia with Lewy bodies, Am. J. Pathol., 1998, 152, 879–884

    PubMed  CAS  Google Scholar 

  346. Culvenor J.G., McLean C.A., Cutt S., Campbell B.C., Maher F., Jakala P., et al., Non-Aβ component of Alzheimer’s disease amyloid (NAC) revisited. NAC and α-synuclein are not associated with Aβ amyloid, Am. J. Pathol., 1999, 155, 1173–1181

    Article  PubMed  CAS  Google Scholar 

  347. Dickson D.W., Liu W., Hardy J., Farrer M., Mehta N., Uitti R., et al., Widespread alterations of α-synuclein in multiple system atrophy, Am. J. Pathol., 1999, 155, 1241–1251

    Article  PubMed  CAS  Google Scholar 

  348. Duda J.E., Giasson B.I., Mabon M.E., Lee V.M., Trojanowski J.Q., Novel antibodies to synuclein show abundant striatal pathology in Lewy body diseases, Ann. Neurol., 2002, 52, 205–210

    Article  PubMed  CAS  Google Scholar 

  349. Giasson B.I., Jakes R., Goedert M., Duda J.E., Leight S., Trojanowski J.Q., et al., A panel of epitope-specific antibodies detects protein domains distributed throughout human α-synuclein in Lewy bodies of Parkinson’s disease, J. Neurosci. Res., 2000, 59, 528–533

    Article  PubMed  CAS  Google Scholar 

  350. Croisier E., DE M.R., Deprez M., Goldring K., Dexter D.T., Pearce R.K., et al., Comparative study of commercially available anti-α-synuclein antibodies, Neuropathol. Appl. Neurobiol., 2006, 32, 351–356

    Article  PubMed  CAS  Google Scholar 

  351. Langston J.W., Sastry S., Chan P., Forno L.S., Bolin L.M., Di Monte D.A., Novel α-synuclein-immunoreactive proteins in brain samples from the Contursi kindred, Parkinson’s, and Alzheimer’s disease, Exp. Neurol., 1998, 154, 684–690

    Article  PubMed  CAS  Google Scholar 

  352. Mougenot A.L., Betemps D., Hogeveen K.N., Kovacs G.G., Chouaf-Lakhdar L., Milhavet O., et al., Production of a monoclonal antibody, against human α-synuclein, in a subpopulation of C57BL/6J mice, presenting a deletion of the α-synuclein locus, J. Neurosci. Methods, 2010, 192, 268–276

    Article  PubMed  CAS  Google Scholar 

  353. Waxman E.A., Duda J.E., Giasson B.I., Characterization of antibodies that selectively detect α-synuclein in pathological inclusions, Acta Neuropathol., 2008, 116, 37–46

    Article  PubMed  CAS  Google Scholar 

  354. Yu S., Li X., Liu G., Han J., Zhang C., Li Y., et al., Extensive nuclear localization of α-synuclein in normal rat brain neurons revealed by a novel monoclonal antibody, Neuroscience, 2007, 145, 539–555

    Article  PubMed  CAS  Google Scholar 

  355. Kovacs G.G., Wagner U., Dumont B., Pikkarainen M., Osman A.A., Streichenberger N., et al., An antibody with high reactivity for disease-associated α-synuclein reveals extensive brain pathology, Acta Neuropathol., 2012, in print, doi: 10.1007/s00401-00012-00964-x

  356. Muntane G., Dalfo E., Martinez A., Ferrer I., Phosphorylation of tau and α-synuclein in synaptic-enriched fractions of the frontal cortex in Alzheimer’s disease, and in Parkinson’s disease and related α-synucleinopathies, Neuroscience, 2008, 152, 913–923

    Article  PubMed  CAS  Google Scholar 

  357. Lee H.J., Baek S.M., Ho D.H., Suk J.E., Cho E.D., Lee S.J., Dopamine promotes formation and secretion of non-fibrillar α-synuclein oligomers, Exp. Mol. Med., 2011, 43, 216–222

    Article  PubMed  CAS  Google Scholar 

  358. Gorbatyuk O.S., Li S., Sullivan L.F., Chen W., Kondrikova G., Manfredsson F.P., et al., The phosphorylation state of Ser-129 in human α-synuclein determines neurodegeneration in a rat model of Parkinson disease, Proc. Natl. Acad. Sci. USA, 2008, 105, 763–768

    Article  PubMed  CAS  Google Scholar 

  359. Lou H., Montoya S.E., Alerte T.N., Wang J., Wu J., Peng X., et al., Serine 129 phosphorylation reduces the ability of α-synuclein to regulate tyrosine hydroxylase and protein phosphatase 2A in vitro and in vivo, J. Biol. Chem., 2010, 285, 17648–17661

    Article  PubMed  CAS  Google Scholar 

  360. Okochi M., Walter J., Koyama A., Nakajo S., Baba M., Iwatsubo T., et al., Constitutive phosphorylation of the Parkinson’s disease associated α-synuclein, J. Biol. Chem., 2000, 275, 390–397

    Article  PubMed  CAS  Google Scholar 

  361. Saito Y., Kawashima A., Ruberu N.N., Fujiwara H., Koyama S., Sawabe M., et al., Accumulation of phosphorylated α-synuclein in aging human brain, J. Neuropathol. Exp. Neurol., 2003, 62, 644–654

    PubMed  CAS  Google Scholar 

  362. Smith W.W., Margolis R.L., Li X., Troncoso J.C., Lee M.K., Dawson V.L., et al., α-Synuclein phosphorylation enhances eosinophilic cytoplasmic inclusion formation in SH-SY5Y cells, J. Neurosci., 2005, 25, 5544–5552

    Article  PubMed  CAS  Google Scholar 

  363. Chiba-Falek O., Touchman J.W., Nussbaum R.L., Functional analysis of intra-allelic variation at NACP-Rep1 in the α-synuclein gene, Hum. Genet., 2003, 113, 426–431

    Article  PubMed  CAS  Google Scholar 

  364. Xie W., Wan O.W., Chung K.K., New insights into the role of mitochondrial dysfunction and protein aggregation in Parkinson’s disease, Biochim. Biophys. Acta, 2010, 1802, 935–941

    PubMed  CAS  Google Scholar 

  365. Double K.L., Reyes S., Werry E.L., Halliday G.M., Selective cell death in neurodegeneration: why are some neurons spared in vulnerable regions?, Prog. Neurobiol., 2010, 92, 316–329

    Article  PubMed  CAS  Google Scholar 

  366. Banerjee R., Starkov A.A., Beal M.F., Thomas B., Mitochondrial dysfunction in the limelight of Parkinson’s disease pathogenesis, Biochim. Biophys. Acta, 2009, 1792, 651–663

    PubMed  CAS  Google Scholar 

  367. Schapira A.H., Etiology and pathogenesis of Parkinson disease, Neurol. Clin., 2009, 27, 583–603, v

    Article  PubMed  Google Scholar 

  368. Ferrer I., Early involvement of the cerebral cortex in Parkinson’s disease: convergence of multiple metabolic defects, Prog. Neurobiol., 2009, 88, 89–103

    Article  PubMed  CAS  Google Scholar 

  369. Jellinger K.A., Interaction between pathogenic proteins in neurodegenerative disorders, J. Cell. Mol. Med., 2011, doi: 10.1111/j.1582-4934.2011.01507.x. [Epub ahead of print]

  370. Jellinger K.A., Interaction between α-synuclein and other proteins in neurodegenerative disorders, ScientificWorld Journal, 2011, 11, 1893–1907

    Article  PubMed  CAS  Google Scholar 

  371. Jellinger K.A., Interaction between α-synuclein and tau in Parkinson’s disease Comment on Wills et al.: Elevated tauopathy and α-synuclein pathology in postmortem Parkinson’s disease brains with and without dementia. Exp. Neurol. 2010; 225: 210–218, Exp. Neurol., 2011, 227, 13–18

    Article  CAS  Google Scholar 

  372. Elstner M., Muller S.K., Leidolt L., Laub C., Krieg L., Schlaudraff F., et al., Neuromelanin, neurotransmitter status and brainstem location determine the differential vulnerability of catecholaminergic neurons to mitochondrial DNA deletions, Mol. Brain, 2011, 4, 43

    Article  PubMed  CAS  Google Scholar 

  373. Dickson D.W., Braak H., Duda J.E., Duyckaerts C., Gasser T., Halliday G.M., et al., Neuropathological assessment of Parkinson’s disease: refining the diagnostic criteria, Lancet Neurol., 2009, 8, 1150–1157

    Article  PubMed  CAS  Google Scholar 

  374. Elstner M., Morris C.M., Heim K., Bender A., Mehta D., Jaros E., et al., Expression analysis of dopaminergic neurons in Parkinson’s disease and aging links transcriptional dysregulation of energy metabolism to cell death, Acta Neuropathol., 2011, 122, 75–86

    Article  PubMed  CAS  Google Scholar 

  375. Qian L., Flood P.M., Hong J.S., Neuroinflammation is a key player in Parkinson’s disease and a prime target for therapy, J. Neural. Transm., 2010, 117, 971–979

    Article  PubMed  CAS  Google Scholar 

  376. Ros-Bernal F., Hunot S., Herrero M.T., Parnadeau S., Corvol J.C., Lu L., et al., Microglial glucocorticoid receptors play a pivotal role in regulating dopaminergic neurodegeneration in parkinsonism, Proc. Natl. Acad. Sci. USA, 2011, 108, 6632–6637

    Article  PubMed  CAS  Google Scholar 

  377. Tansey M.G., Goldberg M.S., Neuroinflammation in Parkinson’s disease: its role in neuronal death and implications for therapeutic intervention, Neurobiol. Dis., 2010, 37, 510–518

    Article  PubMed  CAS  Google Scholar 

  378. Paleologou K.E., Schmid A.W., Rospigliosi C.C., Kim H.Y., Lamberto G.R., Fredenburg R.A., et al., Phosphorylation at Ser-129 but not the phosphomimics S129E/D inhibits the fibrillation of α-synuclein, J. Biol. Chem., 2008, 283, 16895–16905

    Article  PubMed  CAS  Google Scholar 

  379. Lashuel H.A., Petre B.M., Wall J., Simon M., Nowak R.J., Walz T., et al., α-Synuclein, especially the Parkinson’s disease-associated mutants, forms pore-like annular and tubular protofibrils, J. Mol. Biol., 2002, 322, 1089–1102

    Article  PubMed  CAS  Google Scholar 

  380. Park J.Y., Lansbury P.T. Jr., Beta-synuclein inhibits formation of α-synuclein protofibrils: a possible therapeutic strategy against Parkinson’s disease, Biochemistry, 2003, 42, 3696–3700

    Article  PubMed  CAS  Google Scholar 

  381. Benilova I., Karran E., De Strooper B., The toxic Aβ oligomer and Alzheimer’s disease: an emperor in need of clothes, Nat. Neurosci., 2012, 15, 349–357

    Article  PubMed  CAS  Google Scholar 

  382. Miake H., Mizusawa H., Iwatsubo T., Hasegawa M., Biochemical characterization of the core structure of α-synuclein filaments, J. Biol. Chem., 2002, 277, 19213–19219

    Article  PubMed  CAS  Google Scholar 

  383. Haass C., Selkoe D.J., Soluble protein oligomers in neurodegeneration: lessons from the Alzheimer’s amyloid β-peptide, Nat. Rev. Mol. Cell. Biol., 2007, 8, 101–112

    Article  PubMed  CAS  Google Scholar 

  384. Aguzzi A., Sigurdson C., Heikenwaelder M., Molecular mechanisms of prion pathogenesis, Annu. Rev. Pathol., 2008, 3, 11–40

    Article  PubMed  CAS  Google Scholar 

  385. Moore R.A., Taubner L.M., Priola S.A., Prion protein misfolding and disease, Curr. Opin. Struct. Biol., 2009, 19, 14–22

    Article  PubMed  CAS  Google Scholar 

  386. Williams A.J., Paulson H.L., Polyglutamine neurodegeneration: protein misfolding revisited, Trends Neurosci., 2008, 31, 521–528

    Article  PubMed  CAS  Google Scholar 

  387. Selkoe D.J., Soluble oligomers of the amyloid β-protein impair synaptic plasticity and behavior, Behav. Brain Res., 2008, 192, 106–113

    Article  PubMed  CAS  Google Scholar 

  388. Caughey B., Lansbury P.T., Protofibrils, pores, fibrils, and neurodegeneration: separating the responsible protein aggregates from the innocent bystanders, Annu. Rev. Neurosci., 2003, 26, 267–298

    Article  PubMed  CAS  Google Scholar 

  389. Walsh D.M., Selkoe D.J., Oligomers on the brain: the emerging role of soluble protein aggregates in neurodegeneration, Protein Pept. Lett., 2004, 11, 213–228

    Article  PubMed  CAS  Google Scholar 

  390. Zhang N.Y., Tang Z., Liu C.W., α-Synuclein protofibrils inhibit 26 S proteasome-mediated protein degradation: understanding the cytotoxicity of protein protofibrils in neurodegenerative disease pathogenesis, J. Biol. Chem., 2008, 283, 20288–20298

    Article  PubMed  CAS  Google Scholar 

  391. Karpinar D.P., Balija M.B., Kugler S., Opazo F., Rezaei-Ghaleh N., Wender N., et al., Pre-fibrillar α-synuclein variants with impaired β-structure increase neurotoxicity in Parkinson’s disease models, EMBO J., 2009, 28, 3256–3268

    Article  PubMed  CAS  Google Scholar 

  392. Auluck P.K., Caraveo G., Lindquist S., α-Synuclein: membrane interactions and toxicity in Parkinson’s disease, Annu. Rev. Cell Dev. Biol., 2010, 26, 211–233

    Article  PubMed  CAS  Google Scholar 

  393. Hoozemans J.J., van Haastert E.S., Nijholt D.A., Rozemuller A.J., Scheper W., Activation of the unfolded protein response is an early event in Alzheimer’s and Parkinson’s disease, Neurodegener. Dis., 2012, 10, 212–215

    Article  PubMed  CAS  Google Scholar 

  394. Soto C., Estrada L.D., Protein misfolding and neurodegeneration, Arch. Neurol., 2008, 65, 184–189

    Article  PubMed  Google Scholar 

  395. Israeli E., Sharon R., Beta-synuclein occurs in vivo in lipid-associated oligomers and forms hetero-oligomers with α-synuclein, J. Neurochem., 2009, 108, 465–474

    Article  PubMed  CAS  Google Scholar 

  396. Hoozemans J.J., van Haastert E.S., Eikelenboom P., de Vos R.A., Rozemuller J.M., Scheper W., Activation of the unfolded protein response in Parkinson’s disease, Biochem. Biophys. Res. Commun., 2007, 354, 707–711

    Article  PubMed  CAS  Google Scholar 

  397. Bellucci A., Navarria L., Zaltieri M., Falarti E., Bodei S., Sigala S., et al., Induction of the unfolded protein response by α-synuclein in experimental models of Parkinson’s disease, J. Neurochem., 2011, 116, 588–605

    Article  PubMed  CAS  Google Scholar 

  398. Colla E., Coune P., Liu Y., Pletnikova O., Troncoso J.C., Iwatsubo T., et al., Endoplasmic reticulum stress is important for the manifestations of α-synucleinopathy in vivo, J. Neurosci., 2012, 32, 3306–3320

    Article  PubMed  CAS  Google Scholar 

  399. Kazantsev A.G., Kolchinsky A.M., Central role of α-synuclein oligomers in neurodegeneration in Parkinson disease, Arch. Neurol., 2008, 65, 1577–1581

    Article  PubMed  Google Scholar 

  400. Makioka K., Yamazaki T., Fujita Y., Takatama M., Nakazato Y., Okamoto K., Involvement of endoplasmic reticulum stress defined by activated unfolded protein response in multiple system atrophy, J. Neurol. Sci., 2010, 297, 60–665

    Article  PubMed  CAS  Google Scholar 

  401. Trojanowski J.Q., Lee V.M., Aggregation of neurofilament and α-synuclein proteins in Lewy bodies: implications for the pathogenesis of Parkinson disease and Lewy body dementia, Arch. Neurol., 1998, 55, 151–152

    Article  PubMed  CAS  Google Scholar 

  402. Xu J., Kao S.Y., Lee F.J., Song W., Jin L.W., Yankner B.A., Dopaminedependent neurotoxicity of α-synuclein: a mechanism for selective neurodegeneration in Parkinson disease, Nat. Med., 2002, 8, 600–606

    Article  PubMed  CAS  Google Scholar 

  403. Winklhofer K.F., Tatzelt J., Haass C., The two faces of protein misfolding: gain- and loss-of-function in neurodegenerative diseases, EMBO J., 2008, 27, 336–349

    Article  PubMed  CAS  Google Scholar 

  404. Fan Y., Limprasert P., Murray I.V., Smith A.C., Lee V.M., Trojanowski J.Q., et al., Beta-synuclein modulates α-synuclein neurotoxicity by reducing α-synuclein protein expression, Hum. Mol. Genet., 2006, 15, 3002–3011

    Article  PubMed  CAS  Google Scholar 

  405. Gadad B.S., Britton G.B., Rao K.S., Targeting oligomers in neurodegenerative disorders: lessons from α-synuclein, tau, and amyloid-β peptide, J. Alzheimers Dis., 2011, 24(Suppl. 2), 223–232

    PubMed  CAS  Google Scholar 

  406. Wilhelmus M.M., Verhaar R., Andringa G., Bol J.G., Cras P., Shan L., et al., Presence of tissue transglutaminase in granular endoplasmic reticulum is characteristic of melanized neurons in Parkinson’s disease brain, Brain Pathol., 2011, 21, 130–139

    Article  PubMed  CAS  Google Scholar 

  407. Danzer K.M., Ruf W.P., Putcha P., Joyner D., Hashimoto T., Glabe C., et al., Heatshock protein 70 modulates toxic extracellular α-synuclein oligomers and rescues trans-synaptic toxicity, FASEB J., 2011, 25, 326–336

    Article  PubMed  CAS  Google Scholar 

  408. Brown D.R., Brain proteins that mind metals: a neurodegenerative perspective, Dalton Trans., 2009, 4069–4076

  409. Peng Y., Wang C., Xu H.H., Liu Y.N., Zhou F., Binding of α-synuclein with Fe(III) and with Fe(II) and biological implications of the resultant complexes, J. Inorg. Biochem., 2010, 104, 365–370

    Article  PubMed  CAS  Google Scholar 

  410. Hillmer A.S., Putcha P., Levin J., Hogen T., Hyman B.T., Kretzschmar H., et al., Converse modulation of toxic α-synuclein oligomers in living cells by N′-benzylidene-benzohydrazide derivates and ferric iron, Biochem. Biophys. Res. Commun., 2010, 391, 461–466

    Article  PubMed  CAS  Google Scholar 

  411. Souza J.M., Giasson B.I., Chen Q., Lee V.M., Ischiropoulos H., Dityrosine cross-linking promotes formation of stable α-synuclein polymers. Implication of nitrative and oxidative stress in the pathogenesis of neurodegenerative synucleinopathies, J. Biol. Chem., 2000, 275, 18344–18349

    Article  PubMed  CAS  Google Scholar 

  412. Lo Bianco C., Ridet J.L., Schneider B.L., Deglon N., Aebischer P., α-Synucleinopathy and selective dopaminergic neuron loss in a rat lentiviral-based model of Parkinson’s disease, Proc. Natl. Acad. Sci. USA, 2002, 99, 10813–10818

    Article  PubMed  CAS  Google Scholar 

  413. Apetri M.M., Maiti N.C., Zagorski M.G., Carey P.R., Anderson V.E., Secondary structure of α-synuclein oligomers: characterization by raman and atomic force microscopy, J. Mol. Biol., 2006, 355, 63–71

    Article  PubMed  CAS  Google Scholar 

  414. Emadi S., Kasturirangan S., Wang M.S., Schulz P., Sierks M.R., Detecting morphologically distinct oligomeric forms of α-synuclein, J. Biol. Chem., 2009, 284, 11048–11058

    Article  PubMed  CAS  Google Scholar 

  415. Sharon R., Bar-Joseph I., Frosch M.P., Walsh D.M., Hamilton J.A., Selkoe D.J., The formation of highly soluble oligomers of α-synuclein is regulated by fatty acids and enhanced in Parkinson’s disease, Neuron, 2003, 37, 583–595

    Article  PubMed  CAS  Google Scholar 

  416. Klucken J., Ingelsson M., Shin Y., Irizarry M.C., Hedley-Whyte E.T., Frosch M., et al., Clinical and biochemical correlates of insoluble α-synuclein in dementia with Lewy bodies, Acta Neuropathol., 2006, 111, 101–108

    Article  PubMed  CAS  Google Scholar 

  417. Paleologou K.E., Kragh C.L., Mann D.M., Salem S.A., Al-Shami R., Allsop D., et al., Detection of elevated levels of soluble α-synuclein oligomers in post-mortem brain extracts from patients with dementia with Lewy bodies, Brain, 2009, 132, 1093–1101

    Article  PubMed  Google Scholar 

  418. Winner B., Jappelli R., Maji S.K., Desplats P.A., Boyer L., Aigner S., et al., In vivo demonstration that α-synuclein oligomers are toxic, Proc. Natl. Acad. Sci. USA, 2011, 108, 4194–4199

    Article  PubMed  CAS  Google Scholar 

  419. Conway K.A., Rochet J.C., Bieganski R.M., Lansbury P.T. Jr., Kinetic stabilization of the α-synuclein protofibril by a dopamine-α-synuclein adduct, Science, 2001, 294, 1346–1349

    Article  PubMed  CAS  Google Scholar 

  420. Amer D.A., Irvine G.B., El-Agnaf O.M., Inhibitors of α-synuclein oligomerization and toxicity: a future therapeutic strategy for Parkinson’s disease and related disorders, Exp. Brain. Res., 2006, 173, 223–233

    Article  PubMed  CAS  Google Scholar 

  421. Sultana Z., Paleologou K.E., Al-Mansoori K.M., Ardah M.T., Singh N., Usmani S., et al., Dynamic modeling of α-synuclein aggregation in dopaminergic neuronal system indicates points of neuroprotective intervention: experimental validation with implications for Parkinson’s therapy, Neuroscience, 2011, 199, 303–317

    Article  PubMed  CAS  Google Scholar 

  422. Outeiro T.F., Putcha P., Tetzlaff J.E., Spoelgen R., Koker M., Carvalho F., et al., Formation of toxic oligomeric α-synuclein species in living cells, PLoS One, 2008, 3, e1867

    Article  PubMed  CAS  Google Scholar 

  423. Esteves A.R., Domingues A.F., Ferreira I.L., Januario C., Swerdlow R.H., Oliveira C.R., et al., Mitochondrial function in Parkinson’s disease cybrids containing an nt2 neuron-like nuclear background, Mitochondrion, 2008, 8, 219–228

    Article  PubMed  CAS  Google Scholar 

  424. Miller D.W., Hague S.M., Clarimon J., Baptista M., Gwinn-Hardy K., Cookson M.R., et al., α-Synuclein in blood and brain from familial Parkinson disease with SNCA locus triplication, Neurology, 2004, 62, 1835–1838

    Article  PubMed  CAS  Google Scholar 

  425. Esteves A.R., Arduino D.M., Swerdlow R.H., Oliveira C.R., Cardoso S.M., Oxidative stress involvement in α-synuclein oligomerization in Parkinson’s disease cybrids, Antioxid. Redox Signal., 2009, 11, 439–448

    Article  PubMed  CAS  Google Scholar 

  426. Uversky V.N., Eliezer D., Biophysics of Parkinson’s disease: structure and aggregation of α-synuclein, Curr. Protein Pept. Sci., 2009, 10, 483–499

    Article  PubMed  CAS  Google Scholar 

  427. Neumann M., Kahle P.J., Giasson B.I., Ozmen L., Borroni E., Spooren W., et al., Misfolded proteinase K-resistant hyperphosphorylated α-synuclein in aged transgenic mice with locomotor deterioration and in human α-synucleinopathies, J. Clin. Invest., 2002, 110, 1429–1439

    PubMed  CAS  Google Scholar 

  428. Volles M.J., Lee S.J., Rochet J.C., Shtilerman M.D., Ding T.T., Kessler J.C., et al., Vesicle permeabilization by protofibrillar α-synuclein: implications for the pathogenesis and treatment of Parkinson’s disease, Biochemistry, 2001, 40, 7812–7819

    Article  PubMed  CAS  Google Scholar 

  429. Cook C., Petrucelli L., A critical evaluation of the ubiquitin-proteasome system in Parkinson’s disease, Biochim. Biophys. Acta, 2009, 1792, 664–675

    PubMed  CAS  Google Scholar 

  430. Jellinger K.A., Formation and development of Lewy pathology: a critical update, J. Neurol., 2009, 256(Suppl. 3), 270–279

    Article  PubMed  Google Scholar 

  431. Jellinger K.A., A critical evaluation of current staging of α-synuclein pathology in Lewy body disorders, Biochim. Biophys. Acta, 2009, 1792, 730–740

    PubMed  CAS  Google Scholar 

  432. Jellinger K.A., Significance of brain lesions in Parkinson disease dementia and Lewy body dementia, In: Giannakopoulos P., Hof P.R., eds., Dementia in clinical practice. Front. Neurol. Neurosci., vol. 24, Karger, Basel, 2009

    Chapter  Google Scholar 

  433. Jellinger K.A., Basic mechanisms of neurodegeneration: a critical update, J. Cell. Mol. Med., 2010, 14, 457–487

    Article  PubMed  CAS  Google Scholar 

  434. Zhou W., Schaack J., Zawada W.M., Freed C.R., Overexpression of human α-synuclein causes dopamine neuron death in primary human mesencephalic culture, Brain Res., 2002, 926, 42–50

    Article  PubMed  CAS  Google Scholar 

  435. Gosavi N., Lee H.J., Lee J.S., Patel S., Lee S.J., Golgi fragmentation occurs in the cells with prefibrillar α-synuclein aggregates and precedes the formation of fibrillar inclusion, J. Biol. Chem., 2002, 277, 48984–48992

    Article  PubMed  CAS  Google Scholar 

  436. Tabrizi S.J., Orth M., Wilkinson J.M., Taanman J.W., Warner T.T., Cooper J.M., et al., Expression of mutant α-synuclein causes increased susceptibility to dopamine toxicity, Hum. Mol. Genet., 2000, 9, 2683–2689

    Article  PubMed  CAS  Google Scholar 

  437. Petrucelli L., O’Farrell C., Lockhart P.J., Baptista M., Kehoe K., Vink L., et al., Parkin protects against the toxicity associated with mutant α-synuclein: proteasome dysfunction selectively affects catecholaminergic neurons, Neuron, 2002, 36, 1007–1019

    Article  PubMed  CAS  Google Scholar 

  438. Saha A.R., Ninkina N.N., Hanger D.P., Anderton B.H., Davies A.M., Buchman V.L., Induction of neuronal death by α-synuclein, Eur. J. Neurosci., 2000, 12, 3073–3077

    Article  PubMed  CAS  Google Scholar 

  439. Jensen P.J., Alter B.J., O’Malley K.L., α-Synuclein protects naive but not dbcAMP-treated dopaminergic cell types from 1-methyl-4-phenylpyridinium toxicity, J. Neurochem., 2003, 86, 196–209

    Article  PubMed  CAS  Google Scholar 

  440. Alves Da Costa C., Paitel E., Vincent B., Checler F., α-Synuclein lowers p53-dependent apoptotic response of neuronal cells. Abolishment by 6-hydroxydopamine and implication for Parkinson’s disease, J. Biol. Chem., 2002, 277, 50980–50984

    Article  PubMed  CAS  Google Scholar 

  441. Hashimoto M., Hsu L.J., Rockenstein E., Takenouchi T., Mallory M., Masliah E., α-Synuclein protects against oxidative stress via inactivation of the c-Jun N-terminal kinase stress-signaling pathway in neuronal cells, J. Biol. Chem., 2002, 277, 11465–11472

    Article  PubMed  CAS  Google Scholar 

  442. Colapinto M., Mila S., Giraudo S., Stefanazzi P., Molteni M., Rossetti C., et al., α-Synuclein protects SH-SY5Y cells from dopamine toxicity, Biochem. Biophys. Res. Commun., 2006, 349, 1294–1300

    Article  PubMed  CAS  Google Scholar 

  443. Martin F.L., Williamson S.J., Paleologou K.E., Hewitt R., El-Agnaf O.M., Allsop D., Fe(II)-induced DNA damage in α-synuclein-transfected human dopaminergic BE(2)-M17 neuroblastoma cells: detection by the Comet assay, J. Neurochem., 2003, 87, 620–630

    Article  PubMed  CAS  Google Scholar 

  444. Wersinger C., Sidhu A., Differential cytotoxicity of dopamine and H2O2 in a human neuroblastoma divided cell line transfected with α-synuclein and its familial Parkinson’s disease-linked mutants, Neurosci. Lett., 2003, 342, 124–128

    Article  PubMed  CAS  Google Scholar 

  445. Lee M., Hyun D., Halliwell B., Jenner P., Effect of the overexpression of wild-type or mutant α-synuclein on cell susceptibility to insult, J. Neurochem., 2001, 76, 998–1009

    Article  PubMed  CAS  Google Scholar 

  446. Stefanis L., Larsen K.E., Rideout H.J., Sulzer D., Greene L.A., Expression of A53T mutant but not wild-type α-synuclein in PC12 cells induces alterations of the ubiquitin-dependent degradation system, loss of dopamine release, and autophagic cell death, J. Neurosci., 2001, 21, 9549–9560

    PubMed  CAS  Google Scholar 

  447. Stefanis L., Kholodilov N., Rideout H.J., Burke R.E., Greene L.A., Synuclein-1 is selectively up-regulated in response to nerve growth factor treatment in PC12 cells, J. Neurochem., 2001, 76, 1165–1176

    Article  PubMed  CAS  Google Scholar 

  448. Tanaka Y., Engelender S., Igarashi S., Rao R.K., Wanner T., Tanzi R.E., et al., Inducible expression of mutant α-synuclein decreases proteasome activity and increases sensitivity to mitochondria-dependent apoptosis, Hum. Mol. Genet., 2001, 10, 919–926

    Article  PubMed  CAS  Google Scholar 

  449. Smith W.W., Jiang H., Pei Z., Tanaka Y., Morita H., Sawa A., et al., Endoplasmic reticulum stress and mitochondrial cell death pathways mediate A53T mutant α-synuclein-induced toxicity, Hum. Mol. Genet., 2005, 14, 3801–3811

    Article  PubMed  CAS  Google Scholar 

  450. Lee F.J., Liu F., Pristupa Z.B., Niznik H.B., Direct binding and functional coupling of α-synuclein to the dopamine transporters accelerate dopamine-induced apoptosis, FASEB J., 2001, 15, 916–926

    Article  PubMed  CAS  Google Scholar 

  451. Seo J.H., Rah J.C., Choi S.H., Shin J.K., Min K., Kim H.S., et al., α-Synuclein regulates neuronal survival via Bcl-2 family expression and PI3/Akt kinase pathway, FASEB J., 2002, 16, 1826–1828

    PubMed  CAS  Google Scholar 

  452. Buneeva O.A., Medvedev A.E., [Mitochondrial disfunction in Parkinson’s disease], Biomed. Khim., 2011, 57, 246–281

    PubMed  CAS  Google Scholar 

  453. Bueler H., Impaired mitochondrial dynamics and function in the pathogenesis of Parkinson’s disease, Exp. Neurol., 2009, 218, 235–246

    Article  PubMed  CAS  Google Scholar 

  454. Filosto M., Scarpelli M., Cotelli M.S., Vielmi V., Todeschini A., Gregorelli V., et al., The role of mitochondria in neurodegenerative diseases, J. Neurol., 2011, 258, 1763–1774

    Article  PubMed  CAS  Google Scholar 

  455. Karbowski M., Neutzner A., Neurodegeneration as a consequence of failed mitochondrial maintenance, Acta Neuropathol., 2012, 123, 157–171

    Article  PubMed  CAS  Google Scholar 

  456. Vila M., Ramonet D., Perier C., Mitochondrial alterations in Parkinson’s disease: new clues, J. Neurochem., 2008, 107, 317–328

    Article  PubMed  CAS  Google Scholar 

  457. Yao Z., Wood N.W., Cell death pathways in Parkinson’s disease: Role of mitochondria, Antioxid. Redox Signal., 2009, 11, 2135–2149

    Article  PubMed  CAS  Google Scholar 

  458. Winklhofer K.F., Haass C., Mitochondrial dysfunction in Parkinson’s disease, Biochim. Biophys. Acta, 2010, 1802, 29–44

    PubMed  CAS  Google Scholar 

  459. Schapira A.H., Mitochondria in the aetiology and pathogenesis of Parkinson’s disease, Lancet Neurol., 2008, 7, 97–109

    Article  PubMed  CAS  Google Scholar 

  460. Yang Y., Lu B., Mitochondrial morphogenesis, distribution, and Parkinson disease: insights from PINK1, J. Neuropathol. Exp. Neurol., 2009, 68, 953–963

    Article  PubMed  CAS  Google Scholar 

  461. Lin M.T., Beal M.F., Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases, Nature, 2006, 443, 787–795

    Article  PubMed  CAS  Google Scholar 

  462. Martin L.J., Mitochondrial pathobiology in Parkinson’s disease and amyotrophic lateral sclerosis, J. Alzheimers Dis., 2010, 20(Suppl. 2), S335–356

    PubMed  Google Scholar 

  463. Coskun P., Wyrembak J., Schriner S.E., Chen H.W., Marciniack C., Laferla F., et al., A mitochondrial etiology of Alzheimer and Parkinson disease, Biochim. Biophys. Acta, 2012, 1820, 553–564

    Article  PubMed  CAS  Google Scholar 

  464. Chan C.S., Gertler T.S., Surmeier D.J., Calcium homeostasis, selective vulnerability and Parkinson’s disease, Trends Neurosci., 2009, 32, 249–256

    Article  PubMed  CAS  Google Scholar 

  465. Danzer K.M., Haasen D., Karow A.R., Moussaud S., Habeck M., Giese A., et al., Different species of α-synuclein oligomers induce calcium influx and seeding, J. Neurosci., 2007, 27, 9220–9232

    Article  PubMed  CAS  Google Scholar 

  466. Hettiarachchi N.T., Parker A., Dallas M.L., Pennington K., Hung C.C., Pearson H.A., et al., α-Synuclein modulation of Ca2+ signaling in human neuroblastoma (SH-SY5Y) cells, J. Neurochem., 2009, 111, 1192–1201

    Article  PubMed  CAS  Google Scholar 

  467. Murgia M., Giorgi C., Pinton P., Rizzuto R., Controlling metabolism and cell death: at the heart of mitochondrial calcium signalling, J. Mol. Cell. Cardiol., 2009, 46, 781–788

    Article  PubMed  CAS  Google Scholar 

  468. Esteves A.R., Arduino D.M., Silva D.F., Oliveira C.R., Cardoso S.M., Mitochondriald dysfunction: the road to α-synuclein oligomerization in PD, Parkinsons Dis., 2011, 2011, 693761

    PubMed  CAS  Google Scholar 

  469. Youle R.J., Strasser A., The BCL-2 protein family: opposing activities that mediate cell death, Nat. Rev. Mol. Cell. Biol., 2008, 9, 47–59

    Article  PubMed  CAS  Google Scholar 

  470. Wang C., Youle R.J., The role of mitochondria in apoptosis, Annu. Rev. Genet., 2009, 43, 95–118

    Article  PubMed  CAS  Google Scholar 

  471. Kamp F., Exner N., Lutz A.K., Wender N., Hegermann J., Brunner B., et al., Inhibition of mitochondrial fusion by α-synuclein is rescued by PINK1, Parkin and DJ-1, EMBO J., 2010, 29, 3571–3589

    Article  PubMed  CAS  Google Scholar 

  472. Guzman J.N., Sanchez-Padilla J., Wokosin D., Kondapalli J., Ilijic E., Schumacker P.T., et al., Oxidant stress evoked by pacemaking in dopaminergic neurons is attenuated by DJ-1, Nature, 2010, 468, 696–700

    Article  PubMed  CAS  Google Scholar 

  473. Nakamura K., Nemani V.M., Azarbal F., Skibinski G., Levy J.M., Egami K., et al., Direct membrane association drives mitochondrial fission by the Parkinson disease-associated protein α-synuclein, J. Biol. Chem., 2011, 286, 20710–20726

    Article  PubMed  CAS  Google Scholar 

  474. Knott A.B., Perkins G., Schwarzenbacher R., Bossy-Wetzel E., Mitochondrial fragmentation in neurodegeneration, Nat. Rev. Neurosci., 2008, 9, 505–518

    Article  PubMed  CAS  Google Scholar 

  475. Henchcliffe C., Beal M.F., Mitochondrial biology and oxidative stress in Parkinson disease pathogenesis, Nat. Clin. Pract. Neurol., 2008, 4, 600–609

    Article  PubMed  CAS  Google Scholar 

  476. Chinta S.J., Mallajosyula J.K., Rane A., Andersen J.K., Mitochondrial α-synuclein accumulation impairs complex I function in dopaminergic neurons and results in increased mitophagy in vivo, Neurosci. Lett., 2010, 486, 235–239

    Article  PubMed  CAS  Google Scholar 

  477. Loeb V., Yakunin E., Saada A., Sharon R., The transgenic overexpression of α-synuclein and not its related pathology associates with complex I inhibition, J. Biol. Chem., 2010, 285, 7334–7343

    Article  PubMed  CAS  Google Scholar 

  478. Beal M.F., Bioenergetic approaches for neuroprotection in Parkinson’s disease, Ann. Neurol., 2003, 53(Suppl. 3), S39–47; discussion S47-38

    Article  PubMed  CAS  Google Scholar 

  479. Gu M., Cooper J.M., Taanman J.W., Schapira A.H., Mitochondrial DNA transmission of the mitochondrial defect in Parkinson’s disease, Ann. Neurol., 1998, 44, 177–186

    Article  PubMed  CAS  Google Scholar 

  480. Bindoff L.A., Birch-Machin M., Cartlidge N.E., Parker W.D. Jr., Turnbull D.M., Mitochondrial function in Parkinson’s disease, Lancet, 1989, 2, 49

    Article  PubMed  CAS  Google Scholar 

  481. Thomas R.R., Keeney P.M., Bennett J.P., Impaired complex-I mitochondrial biogenesis in Parkinson disease frontal cortex, J. Parkinsons Dis., 2012, 2, 67–76

    Google Scholar 

  482. Cardoso S.M., Esteves A.R., Arduino D.M., Mitochondrial metabolic control of microtubule dynamics impairs the autophagic pathway in Parkinson’s disease, Neurodegener. Dis., 2012, 10, 38–40

    Article  PubMed  CAS  Google Scholar 

  483. Cai Q., Davis M.L., Sheng Z.H., Regulation of axonal mitochondrial transport and its impact on synaptic transmission, Neurosci. Res., 2011, 70, 9–15

    Article  PubMed  CAS  Google Scholar 

  484. Betarbet R., Canet-Aviles R.M., Sherer T.B., Mastroberardino P.G., McLendon C., Kim J.H., et al., Intersecting pathways to neurodegeneration in Parkinson’s disease: effects of the pesticide rotenone on DJ-1, α-synuclein, and the ubiquitin-proteasome system, Neurobiol. Dis., 2006, 22, 404–420

    Article  PubMed  CAS  Google Scholar 

  485. Swerdlow R.H., The neurodegenerative mitochondriopathies, J. Alzheimers Dis., 2009, 17, 737–751

    PubMed  CAS  Google Scholar 

  486. Pienaar I.S., Dexter D.T., Burkhard P.R., Mitochondrial proteomics as a selective tool for unraveling Parkinson’s disease pathogenesis, Expert. Rev. Proteomics, 2010, 7, 205–226

    Article  PubMed  CAS  Google Scholar 

  487. Okamoto K., Kondo-Okamoto N., Mitochondria and autophagy: Critical interplay between the two homeostats, Biochim. Biophys. Acta, 2012, 1820, 595–600

    Article  PubMed  CAS  Google Scholar 

  488. Spencer B., Potkar R., Trejo M., Rockenstein E., Patrick C., Gindi R., et al., Beclin 1 gene transfer activates autophagy and ameliorates the neurodegenerative pathology in α-synuclein models of Parkinson’s and Lewy body diseases, J. Neurosci., 2009, 29, 13578–13588

    Article  PubMed  CAS  Google Scholar 

  489. Glick D., Barth S., Macleod K.F., Autophagy: cellular and molecular mechanisms, J. Pathol., 2010, 221, 3–12

    Article  PubMed  CAS  Google Scholar 

  490. Xilouri M., Vogiatzi T., Vekrellis K., Park D., Stefanis L., Abberant α-synuclein confers toxicity to neurons in part through inhibition of chaperone-mediated autophagy, PLoS One, 2009, 4, e5515

    Article  PubMed  CAS  Google Scholar 

  491. Martinez-Vicente M., Talloczy Z., Kaushik S., Massey A.C., Mazzulli J., Mosharov E.V., et al., Dopamine-modified α-synuclein blocks chaperone-mediated autophagy, J. Clin. Invest., 2008, 118, 777–788

    PubMed  CAS  Google Scholar 

  492. Snyder H., Mensah K., Theisler C., Lee J., Matouschek A., Wolozin B., Aggregated and monomeric α-synuclein bind to the S6’ proteasomal protein and inhibit proteasomal function, J. Biol. Chem., 2003, 278, 11753–11759

    Article  PubMed  CAS  Google Scholar 

  493. Dehay B., Bove J., Rodriguez-Muela N., Perier C., Recasens A., Boya P., et al., Pathogenic lysosomal depletion in Parkinson’s disease, J. Neurosci., 2010, 30, 12535–12544

    Article  PubMed  CAS  Google Scholar 

  494. Pan T., Kondo S., Le W., Jankovic J., The role of autophagy-lysosome pathway in neurodegeneration associated with Parkinson’s disease, Brain, 2008, 131, 1969–1978

    Article  PubMed  Google Scholar 

  495. Goker-Alpan O., Stubblefield B.K., Giasson B.I., Sidransky E., Glucocerebrosidase is present in α-synuclein inclusions in Lewy body disorders, Acta Neuropathol., 2010, 120, 641–649

    Article  PubMed  CAS  Google Scholar 

  496. Clark L.N., Kartsaklis L.A., Wolf Gilbert R., Dorado B., Ross B.M., Kisselev S., et al., Association of glucocerebrosidase mutations with dementia with lewy bodies, Arch. Neurol., 2009, 66, 578–583

    Article  PubMed  Google Scholar 

  497. Manning-Bog A.B., Schule B., Langston J.W., α-Synuclein-glucocerebrosidase interactions in pharmacological Gaucher models: a biological link between Gaucher disease and parkinsonism, Neurotoxicology, 2009, 30, 1127–1132

    Article  PubMed  CAS  Google Scholar 

  498. Mazzulli J.R., Xu Y.H., Sun Y., Knight A.L., McLean P.J., Caldwell G.A., et al., Gaucher disease glucocerebrosidase and α-synuclein form a bidirectional pathogenic loop in synucleinopathies, Cell, 2011, 146, 37–52

    Article  PubMed  CAS  Google Scholar 

  499. Neumann J., Bras J., Deas E., O’sullivan S.S., Parkkinen L., Lachmann R.H., et al., Glucocerebrosidase mutations in clinical and pathologically proven Parkinson’s disease, Brain, 2009, 132, 1783–1794

    Article  PubMed  Google Scholar 

  500. Ron I., Rapaport D., Horowitz M., Interaction between parkin and mutant glucocerebrosidase variants: a possible link between Parkinson disease and Gaucher disease, Hum. Mol. Genet., 2010, 19, 3771–3781

    Article  PubMed  CAS  Google Scholar 

  501. Westbroek W., Gustafson A.M., Sidransky E., Exploring the link between glucocerebrosidase mutations and parkinsonism, Trends Mol. Med., 2011, 17, 485–493

    Article  PubMed  CAS  Google Scholar 

  502. Yap T.L., Gruschus J.M., Velayati A., Westbroek W., Goldin E., Moaven N., et al., α-Synuclein interacts with Glucocerebrosidase providing a molecular link between Parkinson and Gaucher diseases, J. Biol. Chem., 2011, 286, 28080–28088

    Article  PubMed  CAS  Google Scholar 

  503. Cullen V., Sardi S.P., Ng J., Xu Y.H., Sun Y., Tomlinson J.J., et al., Acid β-glucosidase mutants linked to Gaucher disease, Parkinson disease, and Lewy body dementia alter α-synuclein processing, Ann. Neurol., 2011, 69, 940–953

    Article  PubMed  CAS  Google Scholar 

  504. Winder-Rhodes S.E., Garcia-Reitbock P., Ban M., Evans J.R., Jacques T.S., Kemppinen A., et al., Genetic and pathological links between Parkinson’s disease and the lysosomal disorder Sanfilippo syndrome, Mov. Disord., 2012, 27, 312–315

    Article  PubMed  Google Scholar 

  505. Sidransky E., Nalls M.A., Aasly J.O., Aharon-Peretz J., Annesi G., Barbosa E.R., et al., Multicenter analysis of glucocerebrosidase mutations in Parkinson’s disease, N. Engl. J. Med., 2009, 361, 1651–1661

    Article  PubMed  CAS  Google Scholar 

  506. Lesage S., Anheim M., Condroyer C., Pollak P., Durif F., Dupuits C., et al., Large-scale screening of the Gaucher’s disease-related glucocerebrosidase gene in Europeans with Parkinson’s disease, Hum. Mol. Genet., 2011, 20, 202–210

    Article  PubMed  CAS  Google Scholar 

  507. DePaolo J., Goker-Alpan O., Samaddar T., Lopez G., Sidransky E., The association between mutations in the lysosomal protein glucocerebrosidase and parkinsonism, Mov. Disord., 2009, 24, 1571–1578

    Article  PubMed  Google Scholar 

  508. Mitsui J., Mizuta I., Toyoda A., Ashida R., Takahashi Y., Goto J., et al., Mutations for Gaucher disease confer high susceptibility to Parkinson disease, Arch. Neurol., 2009, 66, 571–576

    Article  PubMed  Google Scholar 

  509. Hruska K.S., Goker-Alpan O., Sidransky E., Gaucher disease and the synucleinopathies, J. Biomed. Biotechnol., 2006, 2006, 78549

    Article  PubMed  CAS  Google Scholar 

  510. Seto-Salvia N., Pagonabarraga J., Houlden H., Pascual-Sedano B., Dols-Icardo O., Tucci A., et al., Glucocerebrosidase mutations confer a greater risk of dementia during Parkinson’s disease course, Mov. Disord., 2012, 27, 393–399

    Article  PubMed  Google Scholar 

  511. Jenner P., Oxidative stress and Parkinson’s disease, Handb. Clin. Neurol., 2007, 83, 507–520

    Article  PubMed  Google Scholar 

  512. Olivares D., Huang X., Branden L., Greig N.H., Rogers J.T., Physiological and pathological role of α-synuclein in Parkinson’s disease through iron mediated oxidative stress; The role of a putative iron-responsive element, Int. J. Mol. Sci., 2009, 10, 1226–1260

    Article  PubMed  CAS  Google Scholar 

  513. Tsang A.H., Chung K.K., Oxidative and nitrosative stress in Parkinson’s disease, Biochim. Biophys. Acta, 2009, 1792, 643–650

    PubMed  CAS  Google Scholar 

  514. Hsu L.J., Sagara Y., Arroyo A., Rockenstein E., Sisk A., Mallory M., et al., α-synuclein promotes mitochondrial deficit and oxidative stress, Am. J. Pathol., 2000, 157, 401–410

    Article  PubMed  CAS  Google Scholar 

  515. Junn E., Mouradian M.M., Human α-synuclein over-expression increases intracellular reactive oxygen species levels and susceptibility to dopamine, Neurosci. Lett., 2002, 320, 146–150

    Article  PubMed  CAS  Google Scholar 

  516. Cappai R., Leck S.L., Tew D.J., Williamson N.A., Smith D.P., Galatis D., et al., Dopamine promotes α-synuclein aggregation into SDSresistant soluble oligomers via a distinct folding pathway, FASEB J., 2005, 19, 1377–1379

    PubMed  CAS  Google Scholar 

  517. Hoyer W., Cherny D., Subramaniam V., Jovin T.M., Impact of the acidic C-terminal region comprising amino acids 109–140 on α-synuclein aggregation in vitro, Biochemistry, 2004, 43, 16233–16242

    Article  PubMed  CAS  Google Scholar 

  518. Li W., West N., Colla E., Pletnikova O., Troncoso J.C., Marsh L., et al., Aggregation promoting C-terminal truncation of α-synuclein is a normal cellular process and is enhanced by the familial Parkinson’s disease-linked mutations, Proc. Natl. Acad. Sci. USA, 2005, 102, 2162–2167

    Article  PubMed  CAS  Google Scholar 

  519. Liu C.W., Giasson B.I., Lewis K.A., Lee V.M., Demartino G.N., Thomas P.J., A precipitating role for truncated α-synuclein and the proteasome in α-synuclein aggregation: implications for pathogenesis of Parkinson disease, J. Biol. Chem., 2005, 280, 22670–22678

    Article  PubMed  CAS  Google Scholar 

  520. Quilty M.C., King A.E., Gai W.P., Pountney D.L., West A.K., Vickers J.C., et al., α-Synuclein is upregulated in neurones in response to chronic oxidative stress and is associated with neuroprotection, Exp. Neurol., 2006, 199, 249–256

    Article  CAS  PubMed  Google Scholar 

  521. Danielson S.R., Held J.M., Schilling B., Oo M., Gibson B.W., Andersen J.K., Preferentially increased nitration of α-synuclein at tyrosine-39 in a cellular oxidative model of Parkinson’s disease, Anal. Chem., 2009, 81, 7823–7828

    Article  PubMed  CAS  Google Scholar 

  522. Giasson B.I., Duda J.E., Murray I.V., Chen Q., Souza J.M., Hurtig H.I., et al., Oxidative damage linked to neurodegeneration by selective α-synuclein nitration in synucleinopathy lesions, Science, 2000, 290, 985–989

    Article  PubMed  CAS  Google Scholar 

  523. Double K.L., Ben-Shachar D., Youdim M.B., Zecca L., Riederer P., Gerlach M., Influence of neuromelanin on oxidative pathways within the human substantia nigra, Neurotoxicol. Teratol., 2002, 24, 621–628

    Article  PubMed  CAS  Google Scholar 

  524. Gotz M.E., Double K., Gerlach M., Youdim M.B., Riederer P., The relevance of iron in the pathogenesis of Parkinson’s disease, Ann. NY Acad. Sci., 2004, 1012, 193–208

    Article  PubMed  CAS  Google Scholar 

  525. Sofic E., Paulus W., Jellinger K., Riederer P., Youdim M.B., Selective increase of iron in substantia nigra zona compacta of parkinsonian brains, J. Neurochem., 1991, 56, 978–982

    Article  PubMed  CAS  Google Scholar 

  526. Davies P., Moualla D., Brown D.R., α-Synuclein is a cellular ferrireductase, PLoS One, 2011, 6, e15814

    Article  PubMed  CAS  Google Scholar 

  527. Arreguin S., Nelson P., Padway S., Shirazi M., Pierpont C., Dopamine complexes of iron in the etiology and pathogenesis of Parkinson’s disease, J. Inorg. Biochem., 2009, 103, 87–93

    Article  PubMed  CAS  Google Scholar 

  528. Martin H.L., Teismann P., Glutathione — a review on its role and significance in Parkinson’s disease, FASEB J., 2009, 23, 3263–3272

    Article  PubMed  CAS  Google Scholar 

  529. Shaikh S., Nicholson L.F., Advanced glycation end products induce in vitro cross-linking of α-synuclein and accelerate the process of intracellular inclusion body formation, J. Neurosci. Res., 2008, 86, 2071–2082

    Article  PubMed  CAS  Google Scholar 

  530. Rochet J.-C., Liu F., Inhibition of α-synuclein aggregation by antioxidants and chaperones in Parkinson’s disease, In: Ovádi J., Orosz F., eds., Protein folding and misfolding: neurodegenerative diseases. Springer Netherlands, 2009

  531. Levy O.A., Malagelada C., Greene L.A., Cell death pathways in Parkinson’s disease: proximal triggers, distal effectors, and final steps, Apoptosis, 2009, 14, 478–500

    Article  PubMed  Google Scholar 

  532. Nagley P., Higgins G.C., Atkin J.D., Beart P.M., Multifaceted deaths orchestrated by mitochondria in neurones, Biochim. Biophys. Acta, 2010, 1802, 167–185

    PubMed  CAS  Google Scholar 

  533. Zhang W., Wang T., Pei Z., Miller D.S., Wu X., Block M.L., et al., Aggregated α-synuclein activates microglia: a process leading to disease progression in Parkinson’s disease, FASEB J., 2005, 19, 533–542

    Article  PubMed  CAS  Google Scholar 

  534. McGeer P.L., McGeer E.G., Glial reactions in Parkinson’s disease, Mov. Disord., 2008, 23, 474–483

    Article  PubMed  Google Scholar 

  535. Kim C., Lee S.J., Controlling the mass action of α-synuclein in Parkinson’s disease, J. Neurochem., 2008, 107, 303–316

    Article  PubMed  CAS  Google Scholar 

  536. Gao H.M., Zhang F., Zhou H., Kam W., Wilson B., Hong J.S., Neuroinflammation and α-synuclein dysfunction potentiate each other, driving chronic progression of neurodegeneration in a mouse model of Parkinson’s disease, Environ. Health Perspect., 2011, 119, 807–814

    Article  PubMed  CAS  Google Scholar 

  537. Roodveldt C., Christodoulou J., Dobson C.M., Immunological features of α-synuclein in Parkinson’s disease, J. Cell. Mol. Med., 2008, 12, 1820–1829

    Article  PubMed  CAS  Google Scholar 

  538. Przedborski S., Inflammation and Parkinson’s disease pathogenesis, Mov. Disord., 2010, 25(Suppl. 1), S55–57

    Article  PubMed  Google Scholar 

  539. Austin S.A., Floden A.M., Murphy E.J., Combs C.K., α-Synuclein expression modulates microglial activation phenotype, J. Neurosci., 2006, 26, 10558–10563

    Article  PubMed  CAS  Google Scholar 

  540. Rojanathammanee L., Murphy E.J., Combs C.K., Expression of mutant α-synuclein modulates microglial phenotype in vitro, J. Neuroinflammation, 2011, 8, 44

    Article  PubMed  CAS  Google Scholar 

  541. Alvarez-Erviti L., Couch Y., Richardson J., Cooper J.M., Wood M.J., α-Synuclein release by neurons activates the inflammatory response in a microglial cell line, Neurosci. Res., 2011, 69, 337–342

    Article  PubMed  CAS  Google Scholar 

  542. Yokoyama H., Uchida H., Kuroiwa H., Kasahara J., Araki T., Role of glial cells in neurotoxin-induced animal models of Parkinson’s disease, Neurol. Sci., 2011, 32, 1–7

    Article  PubMed  CAS  Google Scholar 

  543. Rogers J., Mastroeni D., Leonard B., Joyce J., Grover A., Neuroinflammation in Alzheimer’s disease and Parkinson’s disease: are microglia pathogenic in either disorder?, Int. Rev. Neurobiol., 2007, 82, 235–246

    Article  PubMed  CAS  Google Scholar 

  544. Gagne J.J., Power M.C., Anti-inflammatory drugs and risk of Parkinson disease: a meta-analysis, Neurology, 2010, 74, 995–1002

    Article  PubMed  CAS  Google Scholar 

  545. McGeer P.L., McGeer E.G., The α-synuclein burden hypothesis of Parkinson disease and its relationship to Alzheimer disease, Exp. Neurol., 2008, 212, 235–238

    Article  PubMed  CAS  Google Scholar 

  546. Gao H.M., Kotzbauer P.T., Uryu K., Leight S., Trojanowski J.Q., Lee V.M., Neuroinflammation and oxidation/nitration of α-synuclein linked to dopaminergic neurodegeneration, J. Neurosci., 2008, 28, 7687–7698

    Article  PubMed  CAS  Google Scholar 

  547. Hirsch E.C., Hunot S., Neuroinflammation in Parkinson’s disease: a target for neuroprotection?, Lancet Neurol., 2009, 8, 382–397

    Article  PubMed  CAS  Google Scholar 

  548. Long-Smith C.M., Sullivan A.M., Nolan Y.M., The influence of microglia on the pathogenesis of Parkinson’s disease, Prog. Neurobiol., 2009, 89, 277–287

    Article  PubMed  CAS  Google Scholar 

  549. Lee H.J., Suk J.E., Bae E.J., Lee J.H., Paik S.R., Lee S.J., Assembly-dependent endocytosis and clearance of extracellular α-synuclein, Int. J. Biochem. Cell Biol., 2008, 40, 1835–1849

    Article  PubMed  CAS  Google Scholar 

  550. Lee H.J., Suk J.E., Bae E.J., Lee S.J., Clearance and deposition of extracellular α-synuclein aggregates in microglia, Biochem. Biophys. Res. Commun., 2008, 372, 423–428

    Article  PubMed  CAS  Google Scholar 

  551. Frank-Cannon T.C., Tran T., Ruhn K.A., Martinez T.N., Hong J., Marvin M., et al., Parkin deficiency increases vulnerability to inflammation-related nigral degeneration, J. Neurosci., 2008, 28, 10825–10834

    Article  PubMed  CAS  Google Scholar 

  552. Zecca L., Wilms H., Geick S., Claasen J.H., Brandenburg L.O., Holzknecht C., et al., Human neuromelanin induces neuroinflammation and neurodegeneration in the rat substantia nigra: implications for Parkinson’s disease, Acta Neuropathol., 2008, 116, 47–55

    Article  PubMed  CAS  Google Scholar 

  553. Kim Y.S., Joh T.H., Microglia, major player in the brain inflammation: their roles in the pathogenesis of Parkinson’s disease, Exp. Mol. Med., 2006, 38, 333–347

    PubMed  CAS  Google Scholar 

  554. Pieper H.C., Evert B.O., Kaut O., Riederer P.F., Waha A., Wullner U., Different methylation of the TNFα promoter in cortex and substantia nigra: Implications for selective neuronal vulnerability, Neurobiol. Dis., 2008, 32, 521–527

    Article  PubMed  CAS  Google Scholar 

  555. Power J.H., Blumbergs P.C., Cellular glutathione peroxidase in human brain: cellular distribution, and its potential role in the degradation of Lewy bodies in Parkinson’s disease and dementia with Lewy bodies, Acta Neuropathol., 2009, 117, 63–73

    Article  PubMed  CAS  Google Scholar 

  556. Lema Tome C.M., Tyson T., Rey N.L., Grathwohl S., Britschgi M., Brundin P., Can inflammation contribute to the prion-like behavior of a-synuclein in Parkinson’s disease?, Mol. Neurobiol., 2012, 45, in print

  557. Kovacs G.G., Botond G., Budka H., Protein coding of neurodegenerative dementias: the neuropathological basis of biomarker diagnostics, Acta Neuropathol., 2010, 119, 389–408

    Article  PubMed  CAS  Google Scholar 

  558. Galpern W.R., Lang A.E., Interface between tauopathies and synucleinopathies: a tale of two proteins, Ann. Neurol., 2006, 59, 449–458

    Article  PubMed  CAS  Google Scholar 

  559. Goris A., Williams-Gray C.H., Clark G.R., Foltynie T., Lewis S.J., Brown J., et al., Tau and α-synuclein in susceptibility to, and dementia in, Parkinson’s disease, Ann. Neurol., 2007, 62, 145–153

    Article  PubMed  CAS  Google Scholar 

  560. Reiniger L., Lukic A., Linehan J., Rudge P., Collinge J., Mead S., et al., Tau, prions and Aβ: the triad of neurodegeneration, Acta Neuropathol., 2011, 121, 5–20

    Article  PubMed  CAS  Google Scholar 

  561. Arai Y., Yamazaki M., Mori O., Muramatsu H., Asano G., Katayama Y., α-Synuclein-positive structures in cases with sporadic Alzheimer’s disease: morphology and its relationship to tau aggregation, Brain Res., 2001, 888, 287–296

    Article  PubMed  CAS  Google Scholar 

  562. Duda J.E., Giasson B.I., Mabon M.E., Miller D.C., Golbe L.I., Lee V.M., et al., Concurrence of α-synuclein and tau brain pathology in the Contursi kindred, Acta Neuropathol. (Berl.), 2002, 104, 7–11

    Article  CAS  Google Scholar 

  563. Iseki E., Togo T., Suzuki K., Katsuse O., Marui W., de Silva R., et al., Dementia with Lewy bodies from the perspective of tauopathy, Acta Neuropathol. (Berl.), 2003, 105, 265–270

    CAS  Google Scholar 

  564. Maries E., Dass B., Collier T.J., Kordower J.H., Steece-Collier K., The role of α-synuclein in Parkinson’s disease: insights from animal models, Nat. Rev. Neurosci., 2003, 4, 727–738

    Article  PubMed  CAS  Google Scholar 

  565. Alim M.A., Hossain M.S., Arima K., Takeda K., Izumiyama Y., Nakamura M., et al., Tubulin seeds α-synuclein fibril formation, J. Biol. Chem., 2002, 277, 2112–2117

    Article  PubMed  CAS  Google Scholar 

  566. Duka T., Rusnak M., Drolet R.E., Duka V., Wersinger C., Goudreau J.L., et al., α-Synuclein induces hyperphosphorylation of Tau in the MPTP model of parkinsonism, FASEB J., 2006, 20, 2302–2312

    Article  PubMed  CAS  Google Scholar 

  567. Duka T., Duka V., Joyce J.N., Sidhu A., α-Synuclein contributes to GSK-3β-catalyzed tau phosphorylation in Parkinson’s disease models, FASEB J., 2009, 23, 2820–2830

    Article  PubMed  CAS  Google Scholar 

  568. Kozikowski A.P., Gaisina I.N., Petukhov P.A., Sridhar J., King L.T., Blond S.Y., et al., Highly potent and specific GSK-3β inhibitors that block tau phosphorylation and decrease α-synuclein protein expression in a cellular model of Parkinson’s disease, Chem. Med. Chem., 2006, 1, 256–266

    PubMed  CAS  Google Scholar 

  569. Kawakami F., Suzuki M., Shimada N., Kagiya G., Ohta E., Tamura K., et al., Stimulatory effect of α-Synuclein on the tau-phosphorylation by GSK-3β, FEBS J., 2011, 278, 4895–4904

    Article  PubMed  CAS  Google Scholar 

  570. Qureshi H.Y., Paudel H.K., Parkinsonian neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and α-synuclein mutations promote tau protein phosphorylation at Ser262 and destabilize microtubule cytoskeleton in vitro, J. Biol. Chem., 2011, 286, 5055–5068

    Article  PubMed  CAS  Google Scholar 

  571. Chung S.J., Armasu S.M., Biernacka J.M., Lesnick T.G., Rider D.N., Lincoln S.J., et al., Common variants in PARK loci and related genes and Parkinson’s disease, Mov. Disord., 2011, 26, 280–288

    Article  PubMed  Google Scholar 

  572. Elbaz A., Ross O.A., Ioannidis J.P., Soto-Ortolaza A.I., Moisan F., Aasly J., et al., Independent and joint effects of the MAPT and SNCA genes in Parkinson disease, Ann. Neurol., 2011, 69, 778–792

    Article  PubMed  CAS  Google Scholar 

  573. Wider C., Vilarino-Guell C., Jasinska-Myga B., Heckman M.G., Soto-Ortolaza A.I., Cobb S.A., et al., Association of the MAPT locus with Parkinson’s disease, Eur. J. Neurol., 2010, 17, 483–486

    Article  PubMed  CAS  Google Scholar 

  574. Wider C., Ross O.A., Nishioka K., Heckman M.G., Vilarino-Guell C., Jasinska-Myga B., et al., An evaluation of the impact of MAPT, SNCA and APOE on the burden of Alzheimer’s and Lewy body pathology, J. Neurol. Neurosurg. Psychiatry, 2012, 83, 424–429

    Article  PubMed  Google Scholar 

  575. Huang Y., Rowe D.B., Halliday G.M., Interaction between α-synuclein and tau genotypes and the progression of Parkinson’s disease, J. Parkinsons Dis., 2011, 1, 271–276

    Google Scholar 

  576. Pankratz N., Wilk J.B., Latourelle J.C., DeStefano A.L., Halter C., Pugh E.W., et al., Genomewide association study for susceptibility genes contributing to familial Parkinson disease, Hum. Genet., 2009, 124, 593–605

    Article  PubMed  CAS  Google Scholar 

  577. Nonaka T., Watanabe S.T., Iwatsubo T., Hasegawa M., Seeded aggregation and toxicity of α-synuclein and tau: cellular models of neurodegenerative diseases, J. Biol. Chem., 2010, 285, 34885–34898

    Article  PubMed  CAS  Google Scholar 

  578. Wills J., Credle J., Haggerty T., Lee J.H., Oaks A.W., Sidhu A., Tauopathic changes in the striatum of A53T α-synuclein mutant mouse model of Parkinson’s disease, PLoS One, 2011, 6, e17953

    Article  PubMed  CAS  Google Scholar 

  579. Kaul T., Credle J., Haggerty T., Oaks A.W., Masliah E., Sidhu A., Region-specific tauopathy and synucleinopathy in brain of the α-synuclein overexpressing mouse model of Parkinson’s disease, BMC Neurosci., 2011, 12, 79

    Article  PubMed  CAS  Google Scholar 

  580. Haggerty T., Credle J., Rodriguez O., Wills J., Oaks A.W., Masliah E., et al., Hyperphosphorylated tau in an α-synuclein-overexpressing transgenic model of Parkinson’s disease, Eur. J. Neurosci., 2011, 33, 1598–1610

    Article  PubMed  Google Scholar 

  581. Chaves R.S., Melo T.Q., Martins S.A., Ferrari M.F., Protein aggregation containing β-amyloid, α-synuclein and hyperphosphorylated tau in cultured cells of hippocampus, substantia nigra and locus coeruleus after rotenone exposure, BMC Neurosci., 2010, 11, 144

    Article  PubMed  CAS  Google Scholar 

  582. Riedel M., Goldbaum O., Richter-Landsberg C., α-Synuclein promotes the recruitment of tau to protein inclusions in oligodendroglial cells: effects of oxidative and proteolytic stress, J. Mol. Neurosci., 2009, 39, 226–234

    Article  PubMed  CAS  Google Scholar 

  583. Lei P., Ayton S., Finkelstein D.I., Adlard P.A., Masters C.L., Bush A.I., Tau protein: relevance to Parkinson’s disease, Int. J. Biochem. Cell Biol., 2010, 42, 1775–1778

    Article  PubMed  CAS  Google Scholar 

  584. Emmer K.L., Waxman E.A., Covy J.P., Giasson B.I., E46K human α-synuclein transgenic mice develop Lewy-like and tau pathology associated with age-dependent detrimental motor impairments, J. Biol. Chem., 2011, 286, 35104–35118

    Article  PubMed  CAS  Google Scholar 

  585. Badiola N., de Oliveira R.M., Herrera F., Guardia-Laguarta C., Goncalves S.A., Pera M., et al., Tau enhances α-synuclein aggregation and toxicity in cellular models of synucleinopathy, PLoS One, 2011, 6, e26609

    Article  PubMed  CAS  Google Scholar 

  586. Esposito A., Dohm C.P., Kermer P., Bahr M., Wouters F.S., α-Synuclein and its disease-related mutants interact differentially with the microtubule protein tau and associate with the actin cytoskeleton, Neurobiol. Dis., 2007, 26, 521–531

    Article  PubMed  CAS  Google Scholar 

  587. Lebel M., Patenaude C., Allyson J., Massicotte G., Cyr M., Dopamine D1 receptor activation induces tau phosphorylation via cdk5 and GSK3 signaling pathways, Neuropharmacology, 2009, 57, 392–402

    Article  PubMed  CAS  Google Scholar 

  588. Giasson B.I., Forman M.S., Higuchi M., Golbe L.I., Graves C.L., Kotzbauer P.T., et al., Initiation and synergistic fibrillization of tau and α-synuclein, Science, 2003, 300, 636–640

    Article  PubMed  CAS  Google Scholar 

  589. Kotzbauer P.T., Giasson B.I., Kravitz A.V., Golbe L.I., Mark M.H., Trojanowski J.Q., et al., Fibrillization of α-synuclein and tau in familial Parkinson’s disease caused by the A53T α-synuclein mutation, Exp. Neurol., 2004, 187, 279–288

    Article  PubMed  CAS  Google Scholar 

  590. Williams-Gray C.H., Evans J.R., Goris A., Foltynie T., Ban M., Robbins T.W., et al., The distinct cognitive syndromes of Parkinson’s disease: 5 year follow-up of the CamPaIGN cohort, Brain, 2009, 132, 2958–2969

    Article  PubMed  Google Scholar 

  591. Seto-Salvia N., Clarimon J., Pagonabarraga J., Pascual-Sedano B., Campolongo A., Combarros O., et al., Dementia risk in Parkinson disease: disentangling the role of MAPT haplotypes, Arch. Neurol., 2011, 68, 359–364

    Article  PubMed  Google Scholar 

  592. Frasier M., Walzer M., McCarthy L., Magnuson D., Lee J.M., Haas C., et al., Tau phosphorylation increases in symptomatic mice overexpressing A30P α-synuclein, Exp. Neurol., 2005, 192, 274–287

    Article  PubMed  CAS  Google Scholar 

  593. Clarimon J., Molina-Porcel L., Gomez-Isla T., Blesa R., Guardia-Laguarta C., Gonzalez-Neira A., et al., Early-onset familial lewy body dementia with extensive tauopathy: a clinical, genetic, and neuropathological study, J. Neuropathol. Exp. Neurol., 2009, 68, 73–82

    Article  PubMed  CAS  Google Scholar 

  594. Fujishiro H., Tsuboi Y., Lin W.L., Uchikado H., Dickson D.W., Colocalization of tau and α-synuclein in the olfactory bulb in Alzheimer’s disease with amygdala Lewy bodies, Acta Neuropathol., 2008, 116, 17–24

    Article  PubMed  CAS  Google Scholar 

  595. Ishizawa T., Mattila P., Davies P., Wang D., Dickson D.W., Colocalization of tau and α-synuclein epitopes in Lewy bodies, J. Neuropathol. Exp. Neurol., 2003, 62, 389–397

    PubMed  CAS  Google Scholar 

  596. Leverenz J.B., Umar I., Wang Q., Montine T.J., McMillan P.J., Tsuang D.W., et al., Proteomic identification of novel proteins in cortical Lewy bodies, Brain Pathol., 2007, 17, 139–145

    Article  PubMed  CAS  Google Scholar 

  597. Shao C.Y., Crary J.F., Rao C., Sacktor T.C., Mirra S.S., Atypical protein kinase C in neurodegenerative disease II: PKCiota/lambda in tauopathies and α-synucleinopathies, J. Neuropathol. Exp. Neurol., 2006, 65, 327–335

    Article  PubMed  CAS  Google Scholar 

  598. Piao Y.S., Hayashi S., Hasegawa M., Wakabayashi K., Yamada M., Yoshimoto M., et al., Co-localization of α-synuclein and phosphorylated tau in neuronal and glial cytoplasmic inclusions in a patient with multiple system atrophy of long duration, Acta Neuropathol., 2001, 101, 285–293

    PubMed  CAS  Google Scholar 

  599. Nagaishi M., Yokoo H., Nakazato Y., Tau-positive glial cytoplasmic granules in multiple system atrophy, Neuropathology, 2011, 31, 299–305

    Article  PubMed  Google Scholar 

  600. Clinton L.K., Blurton-Jones M., Myczek K., Trojanowski J.Q., LaFerla F.M., Synergistic interactions between Aβ, tau, and α-synuclein: acceleration of neuropathology and cognitive decline, J. Neurosci., 2010, 30, 7281–7289

    Article  PubMed  CAS  Google Scholar 

  601. Pletnikova O., West N., Lee M.K., Rudow G.L., Skolasky R.L., Dawson T.M., et al., Aβ deposition is associated with enhanced cortical α-synuclein lesions in Lewy body diseases, Neurobiol. Aging, 2005, 26, 1183–1192

    Article  PubMed  CAS  Google Scholar 

  602. Huang H.C., Jiang Z.F., Accumulated amyloid-β peptide and hyperphosphorylated tau protein: relationship and links in Alzheimer’s disease, J. Alzheimers Dis., 2009, 16, 15–27

    PubMed  CAS  Google Scholar 

  603. Lashley T., Holton J.L., Gray E., Kirkham K., O’sullivan S.S., Hilbig A., et al., Cortical α-synuclein load is associated with amyloid-β plaque burden in a subset of Parkinson’s disease patients, Acta Neuropathol., 2008, 115, 417–425

    Article  PubMed  CAS  Google Scholar 

  604. Masliah E., Rockenstein E., Veinbergs I., Sagara Y., Mallory M., Hashimoto M., et al., β-Amyloid peptides enhance α-synuclein accumulation and neuronal deficits in a transgenic mouse model linking Alzheimer’s disease and Parkinson’s disease, Proc. Natl. Acad. Sci. USA, 2001, 98, 12245–12250

    Article  PubMed  CAS  Google Scholar 

  605. Bate C., Gentleman S., Williams A., α-Synuclein induced synapse damage is enhanced by amyloid-β1-42, Mol. Neurodegener., 2010, 5, 55

    Article  PubMed  CAS  Google Scholar 

  606. Lee V.M., Giasson B.I., Trojanowski J.Q., More than just two peas in a pod: common amyloidogenic properties of tau and α-synuclein in neurodegenerative diseases, Trends Neurosci., 2004, 27, 129–134

    Article  PubMed  CAS  Google Scholar 

  607. Mandal P.K., Pettegrew J.W., Masliah E., Hamilton R.L., Mandal R., Interaction between Aβ peptide and α-synuclein: molecular mechanisms in overlapping pathology of Alzheimer’s and Parkinson’s in dementia with Lewy body disease, Neurochem. Res., 2006, 31, 1153–1162

    Article  PubMed  CAS  Google Scholar 

  608. Fein J.A., Sokolow S., Miller C.A., Vinters H.V., Yang F., Cole G.M., et al., Co-localization of amyloid β and tau pathology in Alzheimer’s disease synaptosomes, Am. J. Pathol., 2008, 172, 1683–1692

    Article  PubMed  CAS  Google Scholar 

  609. Raj A., Kuceyeski A., Weiner M., A network diffusion model of disease progression in dementia, Neuron, 2012, 73, 1204–1215

    Article  PubMed  CAS  Google Scholar 

  610. Brundin P., Li J.Y., Holton J.L., Lindvall O., Revesz T., Research in motion: the enigma of Parkinson’s disease pathology spread, Nat. Rev. Neurosci., 2008, 9, 741–745

    Article  PubMed  CAS  Google Scholar 

  611. Kordower J.H., Chu Y., Hauser R.A., Olanow C.W., Freeman T.B., Transplanted dopaminergic neurons develop PD pathologic changes: a second case report, Mov. Disord., 2008, 23, 2303–2306

    Article  PubMed  Google Scholar 

  612. Li J.Y., Englund E., Holton J.L., Soulet D., Hagell P., Lees A.J., et al., Lewy bodies in grafted neurons in subjects with Parkinson’s disease suggest host-to-graft disease propagation, Nat. Med., 2008, 14, 501–503

    Article  PubMed  CAS  Google Scholar 

  613. Lee S.J., Desplats P., Sigurdson C., Tsigelny I., Masliah E., Cell-to-cell transmission of non-prion protein aggregates, Nat. Rev. Neurol., 2010, 6, 702–706

    Article  PubMed  CAS  Google Scholar 

  614. Li J.Y., Englund E., Widner H., Rehncrona S., Bjorklund A., Lindvall O., et al., Characterization of Lewy body pathology in 12- and 16-yearold intrastriatal mesencephalic grafts surviving in a patient with Parkinson’s disease, Mov. Disord., 2010, 25, 1091–1096

    Article  PubMed  Google Scholar 

  615. Danzer K.M., Krebs S.K., Wolff M., Birk G., Hengerer B., Seeding induced by α-synuclein oligomers provides evidence for spreading of α-synuclein pathology, J. Neurochem., 2009, 111, 192–203

    Article  PubMed  CAS  Google Scholar 

  616. Hardy J., Expression of normal sequence pathogenic proteins for neurodegenerative disease contributes to disease risk: ‘permissive templating’ as a general mechanism underlying neurodegeneration, Biochem. Soc. Trans., 2005, 33, 578–581

    Article  PubMed  CAS  Google Scholar 

  617. Desplats P., Lee H.J., Bae E.J., Patrick C., Rockenstein E., Crews L., et al., Inclusion formation and neuronal cell death through neuron-to-neuron transmission of α-synuclein, Proc. Natl. Acad. Sci. USA, 2009, 106, 13010–13015

    Article  PubMed  CAS  Google Scholar 

  618. Kordower J.H., Dodiya H.B., Kordower A.M., Terpstra B., Paumier K., Madhavan L., et al., Transfer of host-derived α-synuclein to grafted dopaminergic neurons in rat, Neurobiol. Dis., 2011, 43, 552–557

    Article  PubMed  CAS  Google Scholar 

  619. Wood S.J., Wypych J., Steavenson S., Louis J.C., Citron M., Biere A.L., α-synuclein fibrillogenesis is nucleation-dependent. Implications for the pathogenesis of Parkinson’s disease, J. Biol. Chem., 1999, 274, 19509–19512

    Article  PubMed  CAS  Google Scholar 

  620. Lee E.J., Woo M.S., Moon P.G., Baek M.C., Choi I.Y., Kim W.K., et al., α-Synuclein activates microglia by inducing the expressions of matrix metalloproteinases and the subsequent activation of protease-activated receptor-1, J. Immunol., 2010, 185, 615–623

    Article  PubMed  CAS  Google Scholar 

  621. Zhang W., Dallas S., Zhang D., Guo J.P., Pang H., Wilson B., et al., Microglial PHOX and Mac-1 are essential to the enhanced dopaminergic neurodegeneration elicited by A30P and A53T mutant α-synuclein, Glia, 2007, 55, 1178–1188

    Article  PubMed  Google Scholar 

  622. Lee H.J., Suk J.E., Patrick C., Bae E.J., Cho J.H., Rho S., et al., Direct transfer of α-synuclein from neuron to astroglia causes inflammatory responses in synucleinopathies, J. Biol. Chem., 2010, 285, 9262–9272

    Article  PubMed  CAS  Google Scholar 

  623. Saman S., Kim W., Raya M., Visnick Y., Miro S., Jackson B., et al., Exosome-associated tau is secreted in tauopathy models and is selectively phosphorylated in cerebrospinal fluid in early Alzheimer disease, J. Biol. Chem., 2012, 287, 3842–3849

    Article  PubMed  CAS  Google Scholar 

  624. Prusiner S.B., Prions, In: Knipe D.M., Howley P.M., Griffin D.E., Lamb R.A., Martin M.A., Roizman B., Straus S.E., eds., Fields Virology. Lippincott Williams & Wilkins, Philadelphia, 2007

    Google Scholar 

  625. Jao C.C., Hegde B.G., Chen J., Haworth I.S., Langen R., Structure of membrane-bound α-synuclein from site-directed spin labeling and computational refinement, Proc. Natl. Acad. Sci. USA, 2008, 105, 19666–19671

    Article  PubMed  CAS  Google Scholar 

  626. Masliah E., Rockenstein E., Inglis C., Adame A., Bett C., Lucero M., et al., Prion infection promotes extensive accumulation of α-synuclein in aged human α-synuclein transgenic mice, Prion, 2012, 6, in press

  627. Liu L., Drouet V., Wu J.W., Witter M.P., Small S.A., Clelland C., et al., Trans-synaptic spread of tau pathology in vivo, PLoS One, 2012, 7, e31302

    Article  PubMed  CAS  Google Scholar 

  628. Braak H., de Vos R.A., Bohl J., Del Tredici K., Gastric α-synuclein immunoreactive inclusions in Meissner’s and Auerbach’s plexuses in cases staged for Parkinson’s disease-related brain pathology, Neurosci. Lett., 2006, 396, 67–72

    Article  PubMed  CAS  Google Scholar 

  629. Hawkes C.H., Del Tredici K., Braak H., Parkinson’s disease: a dual-hit hypothesis, Neuropathol. Appl. Neurobiol., 2007, 33, 599–614

    Article  PubMed  CAS  Google Scholar 

  630. Halliday G., Murphy K., Pathology of Parkinson’s disease — an overview, In: Schapira A.H.V., Lang A.E.T., Fahn S., eds., Movement Disorders 4. Saunders-Elsevier, 2010

  631. Halliday G.M., Song Y.J., Harding A.J., Striatal β-amyloid in dementia with Lewy bodies but not Parkinson’s disease, J. Neural. Transm., 2011, 118, 713–719

    Article  PubMed  CAS  Google Scholar 

  632. Orimo S., Uchihara T., Nakamura A., Mori F., Kakita A., Wakabayashi K., et al., Axonal α-synuclein aggregates herald centripetal degeneration of cardiac sympathetic nerve in Parkinson’s disease, Brain, 2008, 131, 642–650

    Article  PubMed  Google Scholar 

  633. Ikemura M., Saito Y., Sengoku R., Sakiyama Y., Hatsuta H., Kanemaru K., et al., Lewy body pathology involves cutaneous nerves, J. Neuropathol. Exp. Neurol., 2008, 67, 945–953

    Article  PubMed  Google Scholar 

  634. Dugger B.N., Murray M.E., Boeve B.F., Parisi J.E., Benarroch E.E., Ferman T.J., et al., Neuropathological analysis of brainstem cholinergic and catecholaminergic nuclei in relation to rapid eye movement (REM) sleep behaviour disorder, Neuropathol. Appl. Neurobiol., 2012, 38, 142–152

    Article  PubMed  CAS  Google Scholar 

  635. Lue L.-F., Walker D.G., Adler C.H., Shill H., Tran H., Akiyama H., et al., Biochemical increase in phosphorylated a-synuclein precedes histopathology of Lewy-type synucleinopathies, Brain Pathol., 2012, in print, doi: 10.1111/j.1750-3639.2012.00585.x. [Epub ahead of print]

  636. Galvin J.E., Lee V.M., Trojanowski J.Q., Synucleinopathies: clinical and pathological implications, Arch. Neurol., 2001, 58, 186–190

    Article  PubMed  CAS  Google Scholar 

  637. Burke R.E., Dauer W.T., Vonsattel J.P., A critical evaluation of the Braak staging scheme for Parkinson’s disease, Ann. Neurol., 2008, 64, 485–491

    Article  PubMed  Google Scholar 

  638. Dale G.E., Probst A., Luthert P., Martin J., Anderton B.H., Leigh P.N., Relationships between Lewy bodies and pale bodies in Parkinson’s disease, Acta Neuropathol., 1992, 83, 525–529

    Article  PubMed  CAS  Google Scholar 

  639. Kanazawa T., Adachi E., Orimo S., Nakamura A., Mizusawa H., Uchihara T., Pale neurites, premature α-synuclein aggregates with centripetal extension from axon collaterals, Brain Pathol., 2012, 22, 67–78

    Article  PubMed  Google Scholar 

  640. Cheng H.C., Ulane C.M., Burke R.E., Clinical progression in Parkinson disease and the neurobiology of axons, Ann. Neurol., 2010, 67, 715–725

    Article  PubMed  Google Scholar 

  641. Katsuse O., Iseki E., Marui W., Kosaka K., Developmental stages of cortical Lewy bodies and their relation to axonal transport blockage in brains of patients with dementia with Lewy bodies, J. Neurol. Sci., 2003, 211, 29–35

    Article  PubMed  CAS  Google Scholar 

  642. Kovacs G.G., Milenkovic I.J., Preusser M., Budka H., Nigral burden of α-synuclein correlates with striatal dopamine deficit, Mov. Disord., 2008, 23, 1608–1612

    Article  PubMed  Google Scholar 

  643. Mori F., Nishie M., Kakita A., Yoshimoto M., Takahashi H., Wakabayashi K., Relationship among α-synuclein accumulation, dopamine synthesis, and neurodegeneration in Parkinson disease substantia nigra, J. Neuropathol. Exp. Neurol., 2006, 65, 808–815

    Article  PubMed  CAS  Google Scholar 

  644. Forno L.S., Neuropathology of Parkinson’s disease, J. Neuropathol. Exp. Neurol., 1996, 55, 259–272

    Article  PubMed  CAS  Google Scholar 

  645. Ince P.G., Clark B., Holton J.L., Revesz T., Wharton S.B., Disorders of movement and system degeneration, In: Love S., Louis D.N., Ellison D.W., eds., Greenfield’s Neuropathology, 8th ed. Hodder Arnold, London, 2008

    Google Scholar 

  646. Higashi S., Moore D.J., Minegishi M., Kasanuki K., Fujishiro H., Kabuta T., et al., Localization of MAP1-LC3 in vulnerable neurons and Lewy bodies in brains of patients with dementia with Lewy bodies, J. Neuropathol. Exp. Neurol., 2011, 70, 264–280

    Article  PubMed  CAS  Google Scholar 

  647. Tanji K., Mori F., Kakita A., Takahashi H., Wakabayashi K., Alteration of autophagosomal proteins (LC3, GABARAP and GATE-16) in Lewy body disease, Neurobiol. Dis., 2011, 43, 690–697

    Article  PubMed  CAS  Google Scholar 

  648. Miki Y., Mori F., Tanji K., Kakita A., Takahashi H., Wakabayashi K., Accumulation of histone deacetylase 6, an aggresome-related protein, is specific to Lewy bodies and glial cytoplasmic inclusions, Neuropathology, 2011, 31, 561–568

    Article  PubMed  Google Scholar 

  649. Dugger B.N., Dickson D.W., Cell type specific sequestration of choline acetyltransferase and tyrosine hydroxylase within Lewy bodies, Acta Neuropathol., 2010, 120, 633–639

    Article  PubMed  CAS  Google Scholar 

  650. Itakura E., Mizushima N., p62 Targeting to the autophagosome formation site requires self-oligomerization but not LC3 binding, J. Cell Biol., 2011, 192, 17–27

    Article  PubMed  CAS  Google Scholar 

  651. Odagiri S., Tanji K., Mori F., Kakita A., Takahashi H., Wakabayashi K., Autophagic adapter protein NBR1 is localized in Lewy bodies and glial cytoplasmic inclusions and is involved in aggregate formation in α-synucleinopathy, Acta Neuropathol., 2012, in print, doi: 10.1007/s00401-012-0975-7

  652. Spillantini M.G., Crowther R.A., Jakes R., Hasegawa M., Goedert M., α-Synuclein in filamentous inclusions of Lewy bodies from Parkinson’s disease and dementia with lewy bodies, Proc. Natl. Acad. Sci. USA, 1998, 95, 6469–6473

    Article  PubMed  CAS  Google Scholar 

  653. Hashimoto M., Hsu L.J., Sisk A., Xia Y., Takeda A., Sundsmo M., et al., Human recombinant NACP/α-synuclein is aggregated and fibrillated in vitro: relevance for Lewy body disease, Brain Res., 1998, 799, 301–306

    Article  PubMed  CAS  Google Scholar 

  654. Licker V., Dayton L., Turck N., Côte M., Rodrigo N., Hochstrasser D.F., et al., Proteomic analysis of the substantia nigra in patients with Parkinson’s diseae (abs.), Mov. Disord., 2009, 24(Suppl. 1), S39

    Google Scholar 

  655. van Dijk K.D., Berendse H.W., Drukarch B., Fratantoni S.A., Pham T.V., Piersma S.R., et al., The proteome of the locus ceruleus in Parkinson’s disease: relevance to pathogenesis, Brain Pathol., 2011, in print, doi: 10.1111/j.1750-3639.2011.00540.x

  656. Kanazawa T., Uchihara T., Takahashi A., Nakamura A., Orimo S., Mizusawa H., Three-layered structure shared between Lewy bodies and lewy neurites-three-dimensional reconstruction of triple-labeled sections, Brain Pathol., 2008, 18, 415–422

    Article  PubMed  Google Scholar 

  657. Braak H., Del Tredici K., Invited Article: Nervous system pathology in sporadic Parkinson disease, Neurology, 2008, 70, 1916–1925

    Article  PubMed  Google Scholar 

  658. Braak H., Del Tredici K., Neuroanatomy and pathology of sporadic Parkinson’s disease, Adv. Anat. Embryol. Cell Biol., 2009, 201, 1–119

    PubMed  Google Scholar 

  659. Braak H., Ghebremedhin E., Rüb U., Bratzke H., Del Tredici K., Stages in the development of Parkinson’s disease-related pathology, Cell. Tissue Res., 2004, 318, 121–134

    Article  PubMed  Google Scholar 

  660. Kosaka K., Tsuchiya K., Yoshimura M., Lewy body disease with and without dementia: a clinicopathological study of 35 cases, Clin. Neuropathol., 1988, 7, 299–305

    PubMed  CAS  Google Scholar 

  661. Beach T.G., Adler C.H., Lue L., Sue L.I., Bachalakuri J., Henry-Watson J., et al., Unified staging system for Lewy body disorders: correlation with nigrostriatal degeneration, cognitive impairment and motor dysfunction, Acta Neuropathol., 2009, 117, 613–634

    Article  PubMed  Google Scholar 

  662. Dickson D.W., Uchikado H., Fujishiro H., Tsuboi Y., Evidence in favor of Braak staging of Parkinson’s disease, Mov. Disord., 2010, 25(Suppl. 1), S78–82

    Article  PubMed  Google Scholar 

  663. Kalaitzakis M.E., Graeber M.B., Gentleman S.M., Pearce R.K., Controversies over the staging of α-synuclein pathology in Parkinson’s disease, Acta Neuropathol., 2008, 116, 125–128; author reply 129–131

    Article  PubMed  Google Scholar 

  664. Parkkinen L., Pirttila T., Alafuzoff I., Applicability of current staging/categorization of α-synuclein pathology and their clinical relevance, Acta Neuropathol., 2008, 115, 399–407

    Article  PubMed  Google Scholar 

  665. Frigerio R., Fujishiro H., Ahn T.B., Josephs K.A., Maraganore D.M., Delledonne A., et al., Incidental Lewy body disease: Do some cases represent a preclinical stage of dementia with Lewy bodies?, Neurobiol. Aging, 2011, 32, 857–863

    Article  PubMed  CAS  Google Scholar 

  666. Kalaitzakis M.E., Christian L.M., Moran L.B., Graeber M.B., Pearce R.K., Gentleman S.M., Dementia and visual hallucinations associated with limbic pathology in Parkinson’s disease, Parkinsonism Relat. Disord., 2009, 15, 196–204

    Article  PubMed  CAS  Google Scholar 

  667. Halliday G., Clarifying the pathological progression of Parkinson’s disease, Acta Neuropathol., 2008, 115, 377–378

    Article  PubMed  Google Scholar 

  668. Selikhova M., Williams D.R., Kempster P.A., Holton J.L., Revesz T., Lees A.J., A clinico-pathological study of subtypes in Parkinson’s disease, Brain, 2009, 132, 2947–2957

    Article  PubMed  CAS  Google Scholar 

  669. Leverenz J.B., Hamilton R., Tsuang D.W., Schantz A., Vavrek D., Larson E.B., et al., Empiric refinement of the pathologic assessment of Lewy-related pathology in the dementia patient, Brain Pathol., 2008, 18, 220–224

    Article  PubMed  Google Scholar 

  670. Zaccai J., Brayne C., McKeith I., Matthews F., Ince P.G., Patterns and stages of α-synucleinopathy: Relevance in a population-based cohort, Neurology, 2008, 70, 1042–1048

    Article  PubMed  CAS  Google Scholar 

  671. Bernheimer H., Birkmayer W., Hornykiewicz O., Jellinger K., Seitelberger F., Brain dopamine and the syndromes of Parkinson and Huntington. Clinical, morphological and neurochemical correlations, J. Neurol. Sci., 1973, 20, 415–455

    Article  PubMed  CAS  Google Scholar 

  672. DelleDonne A., Klos K.J., Fujishiro H., Ahmed Z., Parisi J.E., Josephs K.A., et al., Incidental Lewy body disease and preclinical Parkinson disease, Arch. Neurol., 2008, 65, 1074–1080

    Article  PubMed  Google Scholar 

  673. Greffard S., Verny M., Bonnet A.M., Beinis J.Y., Gallinari C., Meaume S., et al., Motor score of the Unified Parkinson Disease Rating Scale as a good predictor of Lewy body-associated neuronal loss in the substantia nigra, Arch. Neurol., 2006, 63, 584–588

    Article  PubMed  Google Scholar 

  674. Sossi V., de la Fuente-Fernandez R., Schulzer M., Troiano A.R., Ruth T.J., Stoessl A.J., Dopamine transporter relation to dopamine turnover in Parkinson’s disease: a positron emission tomography study, Ann. Neurol., 2007, 62, 468–474

    Article  PubMed  Google Scholar 

  675. Parkkinen L., O’sullivan S.S., Collins C., Petrie A., Holton J.L., Revesz T., et al., Disentangling the relationship between Lewy bodies and nigral neuronal loss in Parkinson’s disease, J. Parkinsons Dis., 2011, 1, 277–286

    Google Scholar 

  676. Garcia-Reitbock P., Anichtchik O., Bellucci A., Iovino M., Ballini C., Fineberg E., et al., SNARE protein redistribution and synaptic failure in a transgenic mouse model of Parkinson’s disease, Brain, 2010, 133, 2032–2044

    Article  PubMed  Google Scholar 

  677. Caudle W.M., Richardson J.R., Wang M.Z., Taylor T.N., Guillot T.S., McCormack A.L., et al., Reduced vesicular storage of dopamine causes progressive nigrostriatal neurodegeneration, J. Neurosci., 2007, 27, 8138–8148

    Article  PubMed  CAS  Google Scholar 

  678. Chung C.Y., Koprich J.B., Siddiqi H., Isacson O., Dynamic changes in presynaptic and axonal transport proteins combined with striatal neuroinflammation precede dopaminergic neuronal loss in a rat model of AAV α-synucleinopathy, J. Neurosci., 2009, 29, 3365–3373

    Article  PubMed  CAS  Google Scholar 

  679. Greffard S., Verny M., Bonnet A.M., Seilhean D., Hauw J.J., Duyckaerts C., A stable proportion of Lewy body bearing neurons in the substantia nigra suggests a model in which the Lewy body causes neuronal death, Neurobiol. Aging, 2010, 31, 99–103

    Article  PubMed  CAS  Google Scholar 

  680. Li Y., Liu W., Oo T.F., Wang L., Tang Y., Jackson-Lewis V., et al., Mutant LRRK2 (R1441G) BAC transgenic mice recapitulate cardinal features of Parkinson’s disease, Nat. Neurosci., 2009, 12, 826–828

    Article  PubMed  CAS  Google Scholar 

  681. Gaugler M.N., Genc O., Bobela W., Mohanna S., Ardah M.T., El-Agnaf O.M., et al., Nigrostriatal overabundance of á-synuclein leads to decreased vesicle density and deficits in dopamine release that correlate with reduced motor activity, Acta Neuropathol., 2012, 123, 653–669

    Article  PubMed  CAS  Google Scholar 

  682. Kramer M.L., Schulz-Schaeffer W.J., Presynaptic α-synuclein aggregates, not Lewy bodies, cause neurodegeneration in dementia with Lewy bodies, J. Neurosci., 2007, 27, 1405–1410

    Article  PubMed  CAS  Google Scholar 

  683. Schulz-Schaeffer W.J., The synaptic pathology of α-synuclein aggregation in dementia with Lewy bodies, Parkinson’s disease and Parkinson’s disease dementia, Acta Neuropathol., 2010, 120, 131–143

    Article  PubMed  CAS  Google Scholar 

  684. Tanji K., Mori F., Mimura J., Itoh K., Kakita A., Takahashi H., et al., Proteinase K-resistant α-synuclein is deposited in presynapses in human Lewy body disease and A53T α-synuclein transgenic mice, Acta Neuropathol., 2010, 120, 145–154

    Article  PubMed  CAS  Google Scholar 

  685. Bellucci A., Navarria L., Zaltieri M., Missale C., Spano P., α-Synuclein synaptic pathology and its implications in the development of novel therapeutic approaches to cure Parkinson’s disease, Brain Res., 2012, 1432, 95–113

    Article  PubMed  CAS  Google Scholar 

  686. McKeith I.G., Perry E.K., Perry R.H., Report of the second dementia with Lewy body international workshop: diagnosis and treatment. Consortium on Dementia with Lewy Bodies, Neurology, 1999, 53, 902–905

    Article  PubMed  CAS  Google Scholar 

  687. Aarsland D., Londos E., Ballard C., Parkinson’s disease dementia and dementia with Lewy bodies: different aspects of one entity, Int. Psychogeriatr., 2009, 21, 216–219

    Article  PubMed  Google Scholar 

  688. Ince P.G., Dementia with Lewy bodies and Parkinson’s disease dementia, In: Dickson D.W., Weller R.O., eds., Neurodegeneration: The molecular pathology of dementia and movement disorders, 2nd edition. Blackwell Publishing Ltd., Oxford, 2011

    Google Scholar 

  689. Revuelta G.J., Lippa C.F., Dementia with Lewy bodies and Parkinson’s disease dementia may best be viewed as two distinct entities, Int. Psychogeriatr., 2009, 21, 213–216

    Article  PubMed  Google Scholar 

  690. McKeith I., Dementia with Lewy bodies and Parkinson’s disease with dementia: where two worlds collide, Pract. Neurol., 2007, 7, 374–382

    Article  PubMed  CAS  Google Scholar 

  691. Jellinger K.A., Lewy body disorders, In: Youdim M.B.H., Riederer P., Mandel S.A., Battistin L., Lajtha A., eds., Degenerative diseases of the nervous system. Springer Science, New York, 2007

    Google Scholar 

  692. Jellinger K.A., Attems J., Prevalence and impact of vascular and Alzheimer pathologies in Lewy body disease, Acta Neuropathol., 2008, 115, 427–436

    Article  PubMed  Google Scholar 

  693. Compta Y., Parkkinen L., O’sullivan S.S., Vandrovcova J., Holton J.L., Collins C., et al., Lewy- and Alzheimer-type pathologies in Parkinson’s disease dementia: which is more important?, Brain, 2011, 134, 1493–1505

    Article  PubMed  Google Scholar 

  694. Aarsland D., Ballard C., Larsen J.P., McKeith I., A comparative study of psychiatric symptoms in dementia with Lewy bodies and Parkinson’s disease with and without dementia, Int. J. Geriatr. Psychiatry, 2001, 16, 528–536

    Article  PubMed  CAS  Google Scholar 

  695. Kraybill M.L., Larson E.B., Tsuang D.W., Teri L., McCormick W.C., Bowen J.D., et al., Cognitive differences in dementia patients with autopsy-verified AD, Lewy body pathology, or both, Neurology, 2005, 64, 2069–2073

    Article  PubMed  CAS  Google Scholar 

  696. Deramecourt V., Bombois S., Maurage C.A., Ghestem A., Drobecq H., Vanmechelen E., et al., Biochemical staging of synucleinopathy and amyloid deposition in dementia with Lewy bodies, J. Neuropathol. Exp. Neurol., 2006, 65, 278–288

    PubMed  CAS  Google Scholar 

  697. Alafuzoff I., Ince P.G., Arzberger T., Al-Sarraj S., Bell J., Bodi I., et al., Staging/typing of Lewy body related α-synuclein pathology: a study of the BrainNet Europe Consortium, Acta Neuropathol., 2009, 117, 635–652

    Article  PubMed  CAS  Google Scholar 

  698. Fujimi K., Sasaki K., Noda K., Wakisaka Y., Tanizaki Y., Matsui Y., et al., Clinicopathological outline of dementia with Lewy bodies applying the revised criteria: the Hisayama study, Brain Pathol., 2008, 18, 317–325

    Article  PubMed  Google Scholar 

  699. Fujishiro H., Ferman T.J., Boeve B.F., Smith G.E., Graff-Radford N.R., Uitti R.J., et al., Validation of the neuropathologic criteria of the third consortium for dementia with Lewy bodies for prospectively diagnosed cases, J. Neuropathol. Exp. Neurol., 2008, 67, 649–656

    Article  PubMed  Google Scholar 

  700. McKeith I.G., Dickson D.W., Lowe J., Emre M., O’Brien J.T., Feldman H., et al., Diagnosis and management of dementia with Lewy bodies: third report of the DLB Consortium, Neurology, 2005, 65, 1863–1872

    Article  PubMed  CAS  Google Scholar 

  701. Hansen L.A., The Lewy body variant of Alzheimer disease, J. Neural. Transm. Suppl., 1997, 51, 83–93

    PubMed  CAS  Google Scholar 

  702. Apaydin H., Ahlskog J.E., Parisi J.E., Boeve B.F., Dickson D.W., Parkinson disease neuropathology: later-developing dementia and loss of the levodopa response, Arch. Neurol., 2002, 59, 102–112

    Article  PubMed  Google Scholar 

  703. Braak H., Rub U., Jansen Steur E.N., Del Tredici K., de Vos R.A., Cognitive status correlates with neuropathologic stage in Parkinson disease, Neurology, 2005, 64, 1404–1410

    Article  PubMed  CAS  Google Scholar 

  704. Galvin J.E., Pollack J., Morris J.C., Clinical phenotype of Parkinson disease dementia, Neurology, 2006, 67, 1605–1611

    Article  PubMed  Google Scholar 

  705. Sabbagh M.N., Adler C.H., Lahti T.J., Connor D.J., Vedders L., Peterson L.K., et al., Parkinson disease with dementia: comparing patients with and without Alzheimer pathology, Alzheimer Dis. Assoc. Disord., 2009, 23, 295–297

    Article  PubMed  Google Scholar 

  706. Perry E.K., Haroutunian V., Davis K.L., Levy R., Lantos P., Eagger S., et al., Neocortical cholinergic activities differentiate Lewy body dementia from classical Alzheimer’s disease, Neuroreport, 1994, 5, 747–749

    Article  PubMed  CAS  Google Scholar 

  707. Shimada H., Hirano S., Shinotoh H., Aotsuka A., Sato K., Tanaka N., et al., Mapping of brain acetylcholinesterase alterations in Lewy body disease by PET, Neurology, 2009, 73, 273–278

    Article  PubMed  CAS  Google Scholar 

  708. Masliah E., Recent advances in the understanding of the role of synaptic proteins in Alzheimer’s Disease and other neurodegenerative disorders, J. Alzheimers Dis., 2001, 3, 121–129

    PubMed  CAS  Google Scholar 

  709. Jellinger K.A., Attems J., Does striatal pathology distinguish Parkinson disease with dementia and dementia with Lewy bodies?, Acta Neuropathol. (Berl.), 2006, 112, 253–260

    Article  Google Scholar 

  710. Piggott M.A., Perry E.K., Marshall E.F., McKeith I.G., Johnson M., Melrose H.L., et al., Nigrostriatal dopaminergic activities in dementia with Lewy bodies in relation to neuroleptic sensitivity: comparisons with Parkinson’s disease, Biol. Psychiatry, 1998, 44, 765–774

    Article  PubMed  CAS  Google Scholar 

  711. Ballard C., Ziabreva I., Perry R., Larsen J.P., O’Brien J., McKeith I., et al., Differences in neuropathologic characteristics across the Lewy body dementia spectrum, Neurology, 2006, 67, 1931–1934

    Article  PubMed  CAS  Google Scholar 

  712. Ghebremedhin E., Rosenberger A., Rüb U., Vuksic M., Berhe T., Bickeboller H., et al., Inverse relationship between cerebrovascular lesions and severity of Lewy body pathology in patients with Lewy body diseases, J. Neuropathol. Exp. Neurol., 2010, 69, 442–448

    Article  PubMed  Google Scholar 

  713. Papp M.I., Lantos P.L., The distribution of oligodendroglial inclusions in multiple system atrophy and its relevance to clinical symptomatology, Brain, 1994, 117, 235–243

    Article  PubMed  Google Scholar 

  714. Inoue M., Yagishita S., Ryo M., Hasegawa K., Amano N., Matsushita M., The distribution and dynamic density of oligodendroglial cytoplasmic inclusions (GCIs) in multiple system atrophy: a correlation between the density of GCIs and the degree of involvement of striatonigral and olivopontocerebellar systems, Acta Neuropathol., 1997, 93, 585–591

    Article  PubMed  CAS  Google Scholar 

  715. Ozawa T., Paviour D., Quinn N.P., Josephs K.A., Sangha H., Kilford L., et al., The spectrum of pathological involvement of the striatonigral and olivopontocerebellar systems in multiple system atrophy: clinicopathological correlations, Brain, 2004, 127, 2657–2671

    Article  PubMed  Google Scholar 

  716. Wenning G.K., Jellinger K.A., The role of α-synuclein and tau in neurodegenerative movement disorders, Curr. Opin. Neurol., 2005, 18, 357–362

    Article  PubMed  CAS  Google Scholar 

  717. Wenning G.K., Jellinger K.A., The role of α-synuclein in the pathogenesis of multiple system atrophy, Acta Neuropathol., 2005, 109, 129–140

    Article  PubMed  CAS  Google Scholar 

  718. Ozawa T., Morphological substrate of autonomic failure and neurohormonal dysfunction in multiple system atrophy: impact on determining phenotype spectrum, Acta Neuropathol. (Berl.), 2007, 114, 201–211

    Article  Google Scholar 

  719. Jellinger K.A., Seppi K., Wenning G.K., Grading of neuropathology in multiple system atrophy: proposal for a novel scale, Mov. Disord., 2005, 20(Suppl. 12), S29–36

    Article  PubMed  Google Scholar 

  720. Wenning G.K., Seppi K., Tison F., Jellinger K., A novel grading scale for striatonigral degeneration (multiple system atrophy), J. Neural. Transm., 2002, 109, 307–320

    Article  PubMed  CAS  Google Scholar 

  721. Lantos P.L., The definition of multiple system atrophy: a review of recent developments, J. Neuropathol. Exp. Neurol., 1998, 57, 1099–1111

    Article  PubMed  CAS  Google Scholar 

  722. Spillantini M.G., Crowther R.A., Jakes R., Cairns N.J., Lantos P.L., Goedert M., Filamentous α-synuclein inclusions link multiple system atrophy with Parkinson’s disease and dementia with Lewy bodies, Neurosci. Lett., 1998, 251, 205–208

    Article  PubMed  CAS  Google Scholar 

  723. Arima K., Murayama S., Mukoyama M., Inose T., Immunocytochemical and ultrastructural studies of neuronal and oligodendroglial cytoplasmic inclusions in multiple system atrophy. 1, Neuronal cytoplasmic inclusions, Acta Neuropathol., 1992, 83, 453–460

    Article  PubMed  CAS  Google Scholar 

  724. Stemberger S., Poewe W., Wenning G.K., Stefanova N., Targeted overexpression of human α-synuclein in oligodendroglia induces lesions linked to MSA-like progressive autonomic failure, Exp. Neurol., 2010, 224, 459–464

    Article  PubMed  CAS  Google Scholar 

  725. Matsuo A., Akiguchi I., Lee G.C., McGeer E.G., McGeer P.L., Kimura J., Myelin degeneration in multiple system atrophy detected by unique antibodies, Am. J. Pathol., 1998, 153, 735–744

    Article  PubMed  CAS  Google Scholar 

  726. Duda J.E., Giasson B.I., Chen Q., Gur T.L., Hurtig H.I., Stern M.B., et al., Widespread nitration of pathological inclusions in neurodegenerative synucleinopathies, Am. J. Pathol., 2000, 157, 1439–1445

    Article  PubMed  CAS  Google Scholar 

  727. Song Y.J., Lundvig D.M., Huang Y., Gai W.P., Blumbergs P.C., Hojrup P., et al., p25α relocalizes in oligodendroglia from myelin to cytoplasmic inclusions in multiple system atrophy, Am. J. Pathol., 2007, 171, 1291–1303

    Article  PubMed  CAS  Google Scholar 

  728. Takahashi M., Tomizawa K., Ishiguro K., Sato K., Omori A., Sato S., et al., A novel brain-specific 25 kDa protein (p25) is phosphorylated by a Ser/Thr-Pro kinase (TPK II) from tau protein kinase fractions, FEBS Lett., 1991, 289, 37–43

    Article  PubMed  CAS  Google Scholar 

  729. Kragh C.L., Lund L.B., Febbraro F., Hansen H.D., Gai W.P., El-Agnaf O., et al., α-synuclein aggregation and ser-129 phosphorylation-dependent cell death in oligodendroglial cells, J. Biol. Chem., 2009, 284, 10211–10222

    Article  PubMed  CAS  Google Scholar 

  730. Wenning G.K., Stefanova N., Jellinger K.A., Poewe W., Schlossmacher M.G., Multiple system atrophy: a primary oligodendrogliopathy, Ann. Neurol., 2008, 64, 239–246

    Article  PubMed  CAS  Google Scholar 

  731. Gai W.P., Power J.H., Blumbergs P.C., Culvenor J.G., Jensen P.H., α-Synuclein immunoisolation of glial inclusions from multiple system atrophy brain tissue reveals multiprotein components, J. Neurochem., 1999, 73, 2093–2100

    PubMed  CAS  Google Scholar 

  732. Mollenhauer B., Cullen V., Kahn I., Krastins B., Outeiro T.F., Pepivani I., et al., Direct quantification of CSF α-synuclein by ELISA and first cross-sectional study in patients with neurodegeneration, Exp. Neurol., 2008, 213, 315–325

    Article  PubMed  CAS  Google Scholar 

  733. Schlossmacher M.G., Frosch M.P., Gai W.P., Medina M., Sharma N., Forno L., et al., Parkin localizes to the Lewy bodies of Parkinson disease and dementia with Lewy bodies, Am. J. Pathol., 2002, 160, 1655–1667

    Article  PubMed  CAS  Google Scholar 

  734. Streit W.J., Microglia and Alzheimer’s disease pathogenesis, J. Neurosci. Res., 2004, 77, 1–8

    Article  PubMed  CAS  Google Scholar 

  735. Wenning G.K., Krismer F., Stefanova N., Multiple system atrophy, Springer, Vienna, 2013

    Google Scholar 

  736. Holton J.L., Lees A.L., Revesz T., Multiple system atrophy, In: Dickson D.W., Weller R.O., eds., Neurodegeneration: the molecular pathology of dementia and movement disorders, 2nd edition. Blackwell Publishing Ltd., Oxford, 2011

    Google Scholar 

  737. Wenning G.K., Stefanova N., Recent developments in multiple system atrophy, J. Neurol., 2009, 256, 1791–1808

    Article  PubMed  Google Scholar 

  738. Ubhi K., Low P., Masliah E., Multiple system atrophy: a clinical and neuropathological perspective, Trends Neurosci., 2011, 34, 581–590

    Article  PubMed  CAS  Google Scholar 

  739. Meredith G.E., Rademacher D.J., MPTP mouse models of Parkinson’s disease: an update, J. Parkinsons Dis., 2011, 1, 19–33, doi: 10.3233/JPD-2011-11023

    CAS  Google Scholar 

  740. Cannon J.R., Greenamyre J.T., Neurotoxic in vivo models of Parkinson’s disease recent advances, Prog. Brain Res., 2010, 184, 17–33

    Article  PubMed  CAS  Google Scholar 

  741. Greene J.G., Dingledine R., Greenamyre J.T., Neuron-selective changes in RNA transcripts related to energy metabolism in toxic models of parkinsonism in rodents, Neurobiol. Dis., 2010, 38, 476–481

    Article  PubMed  CAS  Google Scholar 

  742. Tanner C.M., Kamel F., Ross G.W., Hoppin J.A., Goldman S.M., Korell M., et al., Rotenone, paraquat, and Parkinson’s disease, Environ. Health Perspect., 2011, 119, 866–872

    Article  PubMed  CAS  Google Scholar 

  743. Nistico R., Mehdawy B., Piccirilli S., Mercuri N., Paraquatand rotenone-induced models of Parkinson’s disease, Int. J. Immunopathol. Pharmacol., 2011, 24, 313–322

    PubMed  CAS  Google Scholar 

  744. Olanow C.W., Kordower J.H., Modeling Parkinson’s disease, Ann. Neurol., 2009, 66, 432–436

    Article  PubMed  CAS  Google Scholar 

  745. Bezard E., Przedborski S., A tale on animal models of Parkinson’s disease, Mov. Disord., 2011, 26, 993–1002

    Article  PubMed  Google Scholar 

  746. Chesselet M.F., Richter F., Modelling of Parkinson’s disease in mice, Lancet Neurol., 2011, 10, 1108–1118

    Article  PubMed  Google Scholar 

  747. Dawson T.M., Ko H.S., Dawson V.L., Genetic animal models of Parkinson’s disease, Neuron, 2010, 66, 646–661

    Article  PubMed  CAS  Google Scholar 

  748. Dehay B., Bezard E., New animal models of Parkinson’s disease, Mov. Disord., 2011, 26, 1198–1205

    Article  PubMed  Google Scholar 

  749. Mizuno H., Fujikake N., Wada K., Nagai Y., α-Synuclein transgenic drosophila as a model of Parkinson’s disease and related synucleinopathies, Parkinsons Dis., 2010, 2011, 212706

    PubMed  Google Scholar 

  750. Munoz-Soriano V., Paricio N., Drosophila models of Parkinson’s disease: discovering relevant pathways and novel therapeutic strategies, Parkinsons Dis., 2011, 2011, 520640

    PubMed  Google Scholar 

  751. Whitworth A.J., Drosophila models of Parkinson’s disease, Adv. Genet., 2011, 73, 1–50

    Article  PubMed  CAS  Google Scholar 

  752. Yao C., El Khoury R., Wang W., Byrd T.A., Pehek E.A., Thacker C., et al., LRRK2-mediated neurodegeneration and dysfunction of dopaminergic neurons in a Caenorhabditis elegans model of Parkinson’s disease, Neurobiol. Dis., 2010, 40, 73–81

    Article  PubMed  CAS  Google Scholar 

  753. Antony P.M., Diederich N.J., Balling R., Parkinson’s disease mouse models in translational research, Mamm. Genome, 2011, 22, 401–419

    Article  PubMed  Google Scholar 

  754. Moore D.J., Dawson T.M., Value of genetic models in understanding the cause and mechanisms of Parkinson’s disease, Curr. Neurol. Neurosci. Rep., 2008, 8, 288–296

    Article  PubMed  CAS  Google Scholar 

  755. Meredith G.E., Sonsalla P.K., Chesselet M.F., Animal models of Parkinson’s disease progression, Acta Neuropathol., 2008, 115, 385–398

    Article  PubMed  Google Scholar 

  756. Löw K., Aebischer P., Use of viral vectors to create animal models for Parkinson’s disease, Neurobiol. Dis., 2011, doi: 10.1016/j.nbd.2011.12.038

  757. Shults C.W., Rockenstein E., Crews L., Adame A., Mante M., Larrea G., et al., Neurological and neurodegenerative alterations in a transgenic mouse model expressing human α-synuclein under oligodendrocyte promoter: implications for multiple system atrophy, J. Neurosci., 2005, 25, 10689–10699

    Article  PubMed  CAS  Google Scholar 

  758. Yazawa I., Giasson B.I., Sasaki R., Zhang B., Joyce S., Uryu K., et al., Mouse model of multiple system atrophy α-synuclein expression in oligodendrocytes causes glial and neuronal degeneration, Neuron, 2005, 45, 847–859

    Article  PubMed  CAS  Google Scholar 

  759. Stefanova N., Tison F., Reindl M., Poewe W., Wenning G.K., Animal models of multiple system atrophy, Trends Neurosci., 2005, 28, 501–506

    Article  PubMed  CAS  Google Scholar 

  760. Kaindlstorfer C., Garcia J., Winkler C., Wenning G.K., Nikkhah G., Dobrossy M.D., Behavioral and histological analysis of a partial double-lesion model of parkinson-variant multiple system atrophy, J. Neurosci. Res., 2012, 90, 1284–1295

    Article  PubMed  CAS  Google Scholar 

  761. Noguchi-Shinohara M., Tokuda T., Yoshita M., Kasai T., Ono K., Nakagawa M., et al., CSF α-synuclein levels in dementia with Lewy bodies and Alzheimer’s disease, Brain Res., 2009, 1251, 1–6

    Article  PubMed  CAS  Google Scholar 

  762. Borghi R., Marchese R., Negro A., Marinelli L., Forloni G., Zaccheo D., et al., Full length α-synuclein is present in cerebrospinal fluid from Parkinson’s disease and normal subjects, Neurosci. Lett., 2000, 287, 65–67

    Article  PubMed  CAS  Google Scholar 

  763. El-Agnaf O.M., Salem S.A., Paleologou K.E., Cooper L.J., Fullwood N.J., Gibson M.J., et al., α-Synuclein implicated in Parkinson’s disease is present in extracellular biological fluids, including human plasma, FASEB J., 2003, 17, 1945–1947

    PubMed  CAS  Google Scholar 

  764. Jesse S., Steinacker P., Lehnert S., Gillardon F., Hengerer B., Otto M., Neurochemical approaches in the laboratory diagnosis of Parkinson and Parkinson dementia syndromes: a review, CNS Neurosci. Ther., 2009, 15, 157–182

    Article  PubMed  CAS  Google Scholar 

  765. Mollenhauer B., Trenkwalder C., Neurochemical biomarkers in the differential diagnosis of movement disorders, Mov. Disord., 2009, 24, 1411–1426

    Article  PubMed  Google Scholar 

  766. Eller M., Williams D.R., Biological fluid biomarkers in neurodegenerative parkinsonism, Nat. Rev. Neurol., 2009, 5, 561–570

    Article  PubMed  CAS  Google Scholar 

  767. Li Q.X., Mok S.S., Laughton K.M., McLean C.A., Cappai R., Masters C.L., et al., Plasma α-synuclein is decreased in subjects with Parkinson’s disease, Exp. Neurol., 2007, 204, 583–588

    Article  PubMed  CAS  Google Scholar 

  768. Lee H.J., Patel S., Lee S.J., Intravesicular localization and exocytosis of α-synuclein and its aggregates, J. Neurosci., 2005, 25, 6016–6024

    Article  PubMed  CAS  Google Scholar 

  769. El-Agnaf O.M., Salem S.A., Paleologou K.E., Curran M.D., Gibson M.J., Court J.A., et al., Detection of oligomeric forms of α-synuclein protein in human plasma as a potential biomarker for Parkinson’s disease, FASEB J., 2006, 20, 419–425

    Article  PubMed  CAS  Google Scholar 

  770. Mukaetova-Ladinska E.B., Milne J., Andras A., Abdel-All Z., Cerejeira J., Greally E., et al., Alpha- and gamma-synuclein proteins are present in cerebrospinal fluid and are increased in aged subjects with neurodegenerative and vascular changes, Dement. Geriatr. Cogn. Disord., 2008, 26, 32–42

    Article  PubMed  CAS  Google Scholar 

  771. Ohrfelt A., Grognet P., Andreasen N., Wallin A., Vanmechelen E., Blennow K., et al., Cerebrospinal fluid α-synuclein in neurodegenerative disorders-a marker of synapse loss?, Neurosci. Lett., 2009, 450, 332–335

    Article  PubMed  CAS  Google Scholar 

  772. Spies P.E., Melis R.J., Sjogren M.J., Rikkert M.G., Verbeek M.M., Cerebrospinal fluid α-synuclein does not discriminate between dementia disorders, J. Alzheimers Dis., 2009, 16, 363–369

    PubMed  CAS  Google Scholar 

  773. Tokuda T., Salem S.A., Allsop D., Mizuno T., Nakagawa M., Qureshi M.M., et al., Decreased α-synuclein in cerebrospinal fluid of aged individuals and subjects with Parkinson’s disease, Biochem. Biophys. Res. Commun., 2006, 349, 162–166

    Article  PubMed  CAS  Google Scholar 

  774. Foulds P.G., Mitchell J.D., Parker A., Turner R., Green G., Diggle P., et al., Phosphorylated α-synuclein can be detected in blood plasma and is potentially a useful biomarker for Parkinson’s disease, FASEB J., 2011, 25, 4127–4137

    Article  PubMed  CAS  Google Scholar 

  775. Hong Z., Shi M., Chung K.A., Quinn J.F., Peskind E.R., Galasko D., et al., DJ-1 and α-synuclein in human cerebrospinal fluid as biomarkers of Parkinson’s disease, Brain, 2010, 133, 713–726

    Article  PubMed  Google Scholar 

  776. Eller M., Williams D.R., α-Synuclein in Parkinson disease and other neurodegenerative disorders, Clin. Chem. Lab. Med., 2011, 49, 403–408

    Article  PubMed  CAS  Google Scholar 

  777. Buongiorno M., Compta Y., Marti M.J., Amyloid-β and tau biomarkers in Parkinson’s disease-dementia, J. Neurol. Sci., 2011, 310, 25–30

    Article  PubMed  CAS  Google Scholar 

  778. Bidinosti M., Shimshek D.R., Mollenhauer B., Marcellin D., Schweizer T., Lotz G., et al., Novel, one-step TR-FRET immunoassays to quantify distinct a-synuclein species: Applications for biomarker development and high-throughput drug screening, Nature Med., 2012, submitted

  779. Parnetti L., Chiasserini D., Bellomo G., Giannandrea D., De Carlo C., Qureshi M.M., et al., Cerebrospinal fluid tau/α-synuclein ratio in Parkinson’s disease and degenerative dementias, Mov. Disord., 2011, 26, 1428–1435

    Article  PubMed  Google Scholar 

  780. Mollenhauer B., Locascio J.J., Schulz-Schaeffer W., Sixel-Doring F., Trenkwalder C., Schlossmacher M.G., α-Synuclein and tau concentrations in cerebrospinal fluid of patients presenting with parkinsonism: a cohort study, Lancet Neurol., 2011, 10, 230–240

    Article  PubMed  CAS  Google Scholar 

  781. Tateno F., Sakakibara R., Kawai T., Kishi M., Murano T., α-Synuclein in the cerebrospinal fluid differentiates synucleinopathies (Parkinson disease, dementia with Lewy bodies, multiple system atrophy) from Alzheimer disease, Alzheimer Dis. Assoc. Disord., 2011, in print, doi: 10.1097/WAD.1090b1013e31823899cc

  782. Sierks M.R., Chatterjee G., McGraw C., Kasturirangan S., Schulz P., Prasad S., CSF levels of oligomeric α-synuclein and β-amyloid as biomarkers for neurodegenerative disease, Integr. Biol. (Camb.), 2011, 3, 1188–1196

    Article  CAS  Google Scholar 

  783. Tokuda T., Qureshi M.M., Ardah M.T., Varghese S., Shehab S.A., Kasai T., et al., Detection of elevated levels of α-synuclein oligomers in CSF from patients with Parkinson disease, Neurology, 2010, 75, 1766–1772

    Article  PubMed  CAS  Google Scholar 

  784. Wang Y., Shi M., Chung K.A., Zabetian C.P., Leverenz J.B., Berg D., et al., Phosphorylated α-synuclein in Parkinson’s disease, Sci. Transl. Med., 2012, 4, 121ra120

    Google Scholar 

  785. Prikrylova Vranova H., Mares J., Hlustik P., Nevrly M., Stejskal D., Zapletalova J., et al., Tau protein and β-amyloid(1–42) CSF levels in different phenotypes of Parkinson’s disease, J. Neural. Transm., 2012, 119, 353–362

    Article  PubMed  CAS  Google Scholar 

  786. Compta Y., Marti M.J., Ibarretxe-Bilbao N., Junque C., Valldeoriola F., Munoz E., et al., Cerebrospinal tau, phospho-tau, and β-amyloid and neuropsychological functions in Parkinson’s disease, Mov. Disord., 2009, 24, 2203–2210

    Article  PubMed  Google Scholar 

  787. Leverenz J.B., Watson G.S., Shofer J., Zabetian C.P., Zhang J., Montine T.J., Cerebrospinal fluid biomarkers and cognitive performance in non-demented patients with Parkinson’s disease, Parkinsonism Relat. Disord., 2011, 17, 61–64

    Article  PubMed  Google Scholar 

  788. Alves G., Bronnick K., Aarsland D., Blennow K., Zetterberg H., Ballard C., et al., CSF amyloid-β and tau proteins, and cognitive performance, in early and untreated Parkinson’s disease: the Norwegian ParkWest study, J. Neurol. Neurosurg. Psychiatry, 2010, 81, 1080–1086

    Article  PubMed  Google Scholar 

  789. Montine T.J., Shi M., Quinn J.F., Peskind E.R., Craft S., Ginghina C., et al., CSF Aβ(42) and tau in Parkinson’s disease with cognitive impairment, Mov. Disord., 2010, 25, 2682–2685

    Article  PubMed  Google Scholar 

  790. Parnetti L., Tiraboschi P., Lanari A., Peducci M., Padiglioni C., D’Amore C., et al., Cerebrospinal fluid biomarkers in Parkinson’s disease with dementia and dementia with Lewy bodies, Biol. Psychiatry, 2008, 64, 850–855

    Article  PubMed  CAS  Google Scholar 

  791. Aerts M.B., Esselink R.A., Abdo W.F., Bloem B.R., Verbeek M.M., CSF α-synuclein does not differentiate between parkinsonian disorders, Neurobiol. Aging, 2012, 33, 430 e431–433

    Article  CAS  Google Scholar 

  792. Mollenhauer B., Trautmann E., Otte B., Ng J., Spreer A., Lange P., et al., α-Synuclein in human cerebrospinal fluid is principally derived from neurons of the central nervous system, J. Neural. Transm., 2012, doi: 10.1007/s00702-012-0784-0

  793. Foulds P.G., Yokota O., Thurston A., Davidson Y., Ahmed Z., Holton J., et al., Post mortem cerebrospinal fluid α-synuclein levels are raised in multiple system atrophy and distinguish this from the other α-synucleinopathies, Parkinson’s disease and Dementia with Lewy bodies, Neurobiol. Dis., 2012, 45, 188–195

    Article  PubMed  CAS  Google Scholar 

  794. Reesink F.E., Lemstra A.W., van Dijk K.D., Berendse H.W., van de Berg W.D., Klein M., et al., CSF α-synuclein does not discriminate dementia with Lewy bodies from Alzheimer’s disease, J. Alzheimers Dis., 2010, 22, 87–95

    PubMed  CAS  Google Scholar 

  795. Gomperts S.N., Rentz D.M., Moran E., Becker J.A., Locascio J.J., Klunk W.E., et al., Imaging amyloid deposition in Lewy body diseases, Neurology, 2008, 71, 903–910

    Article  PubMed  CAS  Google Scholar 

  796. Foster E.R., Campbell M.C., Burack M.A., Hartlein J., Flores H.P., Cairns N.J., et al., Amyloid imaging of Lewy body-associated disorders, Mov. Disord., 2010, 25, 2516–2523

    Article  PubMed  Google Scholar 

  797. Arai H., Morikawa Y., Higuchi M., Matsui T., Clark C.M., Miura M., et al., Cerebrospinal fluid tau levels in neurodegenerative diseases with distinct tau-related pathology, Biochem. Biophys. Res. Commun., 1997, 236, 262–264

    Article  PubMed  CAS  Google Scholar 

  798. Parnetti L., Lanari A., Amici S., Gallai V., Vanmechelen E., Hulstaert F., CSF phosphorylated tau is a possible marker for discriminating Alzheimer’s disease from dementia with Lewy bodies. Phospho-Tau International Study Group, Neurol. Sci., 2001, 22, 77–78

    Article  PubMed  CAS  Google Scholar 

  799. Engelborghs S., De Vreese K., Van de Casteele T., Vanderstichele H., Van Everbroeck B., Cras P., et al., Diagnostic performance of a CSF-biomarker panel in autopsy-confirmed dementia, Neurobiol. Aging, 2008, 29, 1143–1159

    Article  PubMed  Google Scholar 

  800. Kasuga K., Tokutake T., Ishikawa A., Uchiyama T., Tokuda T., Onodera O., et al., Differential levels of α-synuclein, β-amyloid42 and tau in CSF between patients with dementia with Lewy bodies and Alzheimer’s disease, J. Neurol. Neurosurg. Psychiatry, 2010, 81, 608–610

    Article  PubMed  Google Scholar 

  801. Mukaetova-Ladinska E.B., Monteith R., Perry E.K., Cerebrospinal fluid biomarkers for dementia with lewy bodies, Int. J. Alzheimers Dis., 2010, 536538

  802. Bibl M., Esselmann H., Lewczuk P., Trenkwalder C., Otto M., Kornhuber J., et al., Combined Analysis of CSF Tau, Aβ42, Aβ1-42% and Aβ1-40% in Alzheimer’s Disease, Dementia with Lewy Bodies and Parkinson’s Disease Dementia, Int. J. Alzheimers Dis., 2010, 761571

  803. Mulugeta E., Londos E., Hansson O., Ballard C., Skogseth R., Minthon L., et al., Cerebrospinal fluid levels of sAPPα and sAPPβ in Lewy body and Alzheimer’s disease: clinical and neurochemical correlates, Int. J. Alzheimers Dis., 2011, 495025

  804. Aerts M.B., Esselink R.A., Claassen J.A., Abdo W.F., Bloem B.R., Verbeek M.M., CSF tau, Aβ42, and MHPG differentiate dementia with lewy bodies from Alzheimer’s disease, J. Alzheimers Dis., 2011, 27, 377–384

    PubMed  CAS  Google Scholar 

  805. Koopman K., Le Bastard N., Martin J.J., Nagels G., De Deyn P.P., Engelborghs S., Improved discrimination of autopsy-confirmed Alzheimer’s disease (AD) from non-AD dementias using CSF P-tau(181P), Neurochem. Int., 2009, 55, 214–218

    Article  PubMed  CAS  Google Scholar 

  806. Goldstein D.S., Holmes C., Sharabi Y., Cerebrospinal fluid biomarkers of central catecholamine deficiency in Parkinson’s disease and other synucleinopathies, Brain, 2012, doi: 10.1093/brain/aws055

  807. Ho G.J., Liang W., Waragai M., Sekiyama K., Masliah E., Hashimoto M., Bridging molecular genetics and biomarkers in lewy body and related disorders, Int. J. Alzheimers Dis., 2011, 842475

  808. Warr L., Walker Z., Identification of biomarkers in Lewy-body disorders, Q. J. Nucl. Med. Mol. Imaging, 2012, 39–54

  809. Olanow C.W., Perl D.P., DeMartino G.N., McNaught K.S., Lewy-body formation is an aggresome-related process: a hypothesis, Lancet Neurol., 2004, 3, 496–503

    Article  PubMed  Google Scholar 

  810. Tanaka M., Kim Y.M., Lee G., Junn E., Iwatsubo T., Mouradian M.M., Aggresomes formed by α-synuclein and synphilin-1 are cytoprotective, J. Biol. Chem., 2004, 279, 4625–4631

    Article  PubMed  CAS  Google Scholar 

  811. Brundin P., Olsson R., Can α-synuclein be targeted in novel therapies for Parkinson’s disease?, Expert Rev. Neurother., 2011, 11, 917–919

    Article  PubMed  CAS  Google Scholar 

  812. Lang A.E., Clinical trials of disease-modifying therapies for neurodegenerative diseases: the challenges and the future, Nat. Med., 2010, 16, 1223–1226

    Article  PubMed  CAS  Google Scholar 

  813. Braithwaite S.P., Stock J.B., Mouradian M.M., α-Synuclein phosphorylation as a therapeutic target in Parkinson’s disease, Rev. Neurosci., 2012, 23, 191–198

    Article  PubMed  Google Scholar 

  814. Tomlinson J.J., Cullen V., Schlossmacher M.G., Identifying targets in α-synuclein metabolism to treat Parkinson’s and related disorders, In: Ramirez-Alvaro M., Kelly J.W., Dobson C.M., eds., Protein misfolding diseases: current and emerging principles and therapies, Vol. 37] Wiley and Sons, New York, 2010

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kurt A. Jellinger.

About this article

Cite this article

Jellinger, K.A. The role of α-synuclein in neurodegeneration — An update. Translat.Neurosci. 3, 75–122 (2012). https://doi.org/10.2478/s13380-012-0013-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s13380-012-0013-1

Keywords

Navigation