Skip to main content
Log in

A Study of human and receding horizon controller performance of a remote navigation task with obstacles and feedback delays

  • Research Article
  • Published:
Paladyn

Abstract

In this paper we present results from a study on the performance of humans and automatic controllers in a general remote navigation task. The remote navigation task is defined as driving a vehicle with nonholonomic kinematic constraints around obstacles toward a goal. We conducted experiments with humans and automatic controllers; in these experiments, the number and type of obstacles as well as the feedback delay was varied. Humans showed significantly more robust performance compared to that of a receding horizon controller. Using the human data, we then train a new human-like receding horizon controller which provides goal convergence when there is no uncertainty. We show that paths produced by the trained human-like controller are similar to human paths and that the trained controller improves robustness compared to the original receding horizon controller.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Lewis, M.; Huadong Wang; Velagapudi, P.; Scerri, P.; Sycara, K.;, “Using humans as sensors in robotic search,” Information Fusion, 2009. FUSION’ 09. 12th International Conference on, vol., no., pp.1249–1256, 6–9 July 2009

  2. Chardard, Y.; Copros, T.;, “Swimmer: final sea demonstration of this innovative hybrid AUV/ROV system,” Underwater Technology, 2002. Proceedings of the 2002 International Symposium on, vol., no., pp. 17–23, 2002

  3. Lam, T.M.; Mulder, M.; van Paassen, M.M.;, “Collision avoidance in UAV tele-operation with time delay,” Systems, Man and Cybernetics, 2007. ISIC. IEEE International Conference on, vol., no., pp.997–1002, 7–10 Oct. 2007.

  4. Beltran-Gonzalez, C.; Gasteratos, A.; Amanatiadis, A.; Chrysos-tomou, D.; Guzman, R.; Toth, A.; Szollosi, L.; Juhasz, A.; Galambos, P.;, “Methods and techniques for intelligent navigation and manipulation for bomb disposal and rescue operations,” Safety, Security and Rescue Robotics, 2007. SSRR 2007. IEEE International Workshop on, vol., no., pp.1–6, 27–29 Sept. 2007.

  5. Pradel, G.; Comfaits, O.;, “A framework for a Web-based supervisory control of mobile robots,” Robot and Human Interactive Communication, 2001. Proceedings. 10th IEEE International Workshop on, vol., no., pp.249–255, 2001

  6. Murphy, R.R.; Steimle, E.; Hall, M.; Lindemuth, M.; Trejo, D.; Hurlebaus, S.; Medina-Cetina, Z.; Slocum, D.;, “Robot-assisted bridge inspection after Hurricane Ike,” Safety, Security & Rescue Robotics (SSRR), 2009 IEEE International Workshop on, vol., no., pp.1–5, 3–6 Nov. 2009

  7. Suzuki, S.; Tomomatsu, N.; Harashima, F.; Furuta, K.;, “Skill evaluation based on state-transition model for human adaptive mechatronics (HAM),” Industrial Electronics Society, 2004. IECON 2004. 30th Annual Conference of IEEE, vol.1, no., pp. 641–646 Vol. 1, 2–6 Nov. 2004

    Article  Google Scholar 

  8. Meng Wang; Liu, J.N.K.;, “A novel teleoperation paradigm for human-robot interaction,” Robotics, Automation and Mechatronics, 2004 IEEE Conference on, vol.1, no., pp. 13–18 vol.1, 1–3 Dec. 2004

    Article  Google Scholar 

  9. Burns, V. J.;, “Aircraft Navigation: Design Theory for A Self-Organizing, High Accuracy Navigation System,” Aerospace and Navigational Electronics, IEEE Transactions on, vol.TechnicalæPaper, no.0, pp.3.4.5-1–3.4.5-6, Oct. 1963

  10. Chaojian Shi; Jingyuan Li; Jing Peng;, “A new approach for ARPA display and collision danger assessment,” Radar Symposium, 2008 International, vol., no., pp.1–4, 21–23 May 2008

  11. Kutila, M.; Jokela, M.; Markkula, G.; Rue, M.R.;, “Driver Distraction Detection with a Camera Vision System,” Image Processing, 2007. ICIP 2007. IEEE International Conference on, vol.6, no., pp.VI-201–VI-204, Sept. 16 2007–Oct. 19 2007

  12. Goralski, R.; Gold, C.; Dakowicz, M.;, “Application of the Kinetic Voronoi Diagram to the Real-Time Navigation of Marine Vessels,” Computer Information Systems and Industrial Management Applications, 2007. CISIM’ 07. 6th International Conference on, vol., no., pp.129–134, 28–30 June 2007

  13. Obata, T.; Daimon, T.; Kawashima, H.;, “A cognitive study of in-vehicle navigation systems: Applying verbal protocol analysis to usability evaluation,” Vehicle Navigation and Information Systems Conference, 1993., Proceedings of the IEEE-IEE, vol., no., pp.232–237, 12–15 Oct 1993

  14. Hai Chen; Xin-min Wang; Yan Li;, “A Survey of Autonomous Control for UAV,” Artificial Intelligence and Computational Intelligence, 2009. AICI’ 09. International Conference on, vol.2, no., pp.267271, 7–8 Nov. 2009

    Google Scholar 

  15. Fajen, B. R.; Warren, W. H.; Temizer S.; Kaelbling L. P. 2003. A Dynamical Model of Visually-Guided Steering, Obstacle Avoidance, and Route Selection. International Journal of Computer Vision 54(1/2/3): 13–34.

    Article  MATH  Google Scholar 

  16. Fajen, B. R.; Warren, W. H. 2003. Behavioral Dynamics of Steering, Obstacle Avoidance,and Route Selection. Journal of Experimental Psychology: Human Perception and Performance, Vol. 29, No. 2, 343–362

    Article  Google Scholar 

  17. Huang, W. H.; Fajen, B. R.; Fink, R. J.; Warren, W. H. 2006. Visual navigation and obstacle avoidance using a steering potential function. Robotics and Autonomous Systems, 54(2006) 288–299.

    Article  Google Scholar 

  18. Arechavaleta, G.; Laumond, J.-P.; Hicheur, H.; Berthoz, A.;, “An Optimality Principle Governing Human Walking,” Robotics, IEEE Transactions on, vol.24, no.1, pp.5–14, Feb. 2008

    Article  Google Scholar 

  19. Mejia, J.S.; Stipanovic, D.M., “A modified contractive model predictive control approach,” Decision and Control, 2009 held jointly with the 2009 28th Chinese Control Conference. CDC/stocktickerCCC 2009. Proceedings of the 48th IEEE Conference on, vol., no., pp.1968–1973, 15–18 Dec. 2009

  20. S. de Oliveira and M. Morari, “Contractive model predictive control for constrained nonlinear systems,” IEEE Transactions on Automatic Control, vol. 45, no. 6, pp. 1053–1071, 2000.

    Article  MATH  Google Scholar 

  21. Mejia, J.S.; Stipanovic, D.M.;, “Safe coordination control policy for multiple input constrained nonholonomic vehicles,” Decision and Control, 2009 held jointly with the 2009 28th Chinese Control Conference. CDC/CCC 2009. Proceedings of the 48th IEEE Conference on, vol., no., pp.5679–5684, 15–18 Dec. 2009

  22. Kuwata, Y.; How, J.P.;, “Stable trajectory design for highly constrained environments using receding horizon control,” American Control Conference, 2004. Proceedings of the 2004, vol.1, no., pp. 902–907 vol.1, 30 June–2 July 2004

    Google Scholar 

  23. Ogren, P.; Leonard, N.E.;, “A convergent dynamic window approach to obstacle avoidance,” Robotics, IEEE Transactions on, vol.21, no.2, pp. 188–195, April 2005

    Article  Google Scholar 

  24. C. Burns, J. Zearing, R. F. Wang, D. Stipanovic, “Autonomous and Semiautonomous Control Simulator”, 2010 AAAI Spring Symposium, Technical Report SS-10-04. Published by The AAAI Press, Menlo Park, California.

  25. Inalhan, G.; Stipanovic, D.; and Tomlin, C. 2002. Decentralized optimization, with application to multiple aircraft coordination. In Proceedings of the IEEE 41st Conference on Decision and Control, Las Vegas, Nevada.

  26. D. J. Weiss, Analysis of Variance and Functional Measurement, Oxford University Press, Oxford NY, 2006.

    Google Scholar 

  27. D. Q. Mayne, J. B. Rawlings, C. V Rao, P. O. M. Scokaert. Constrained model predictive control: Stability and optimality. Automatica vol. 36 no. 6: 789–814, 2000.

    Article  MathSciNet  MATH  Google Scholar 

  28. Fujita, Y; Nakamura, Y; Shiller, Z.;, “Dual Dijkstra Search for paths with different topologies,” Robotics and Automation, 2003. Proceedings. ICRA’ 03. IEEE International Conference on, vol.3, no., pp. 3359–3364 vol.3, 14–19 Sept. 2003

    Article  Google Scholar 

  29. G. M. Phillips, “Algorithms for piecewise straight line approximations”, Comput. J., vol. II, pp. 211–212, 1968.

    Google Scholar 

  30. E.W. Dijkstra, “A note on two problems in connexion with graphs,” NumerischeMathematik, vol. 1, pp. 269–271, 1959.

    Article  MathSciNet  MATH  Google Scholar 

  31. R. G. Cleggs, “Bellman-Ford and Dijkstra’s Algorithm,” tech. rep., University of York.

  32. Curve Matching, Time Warping, and Light Fields: New Algorithms for Computing Similarity between Curves, ALON EFRAT AND QUANFU FAN, Department of Computer Science, University of Arizona SURESH VENKATASUBRAMANIAN, AT&T Labs — Research, Published online: 30 November 2006

  33. Helmut Alt and Michael Godau. 1992. Measuring the resemblance of polygonal curves. In Proceedings of the eighth annual symposium on Computational geometry (SCG’ 92). ACM, New York, NY, USA, 102–109.

    Chapter  Google Scholar 

  34. Fei Shao; SongmeiCai; Junzhong Gu;, “A modified Hausdorff distance based algorithm for 2-dimensional spatial trajectory matching,” Computer Science and Education (ICCSE), 2010 5th International Conference on, vol., no., pp.166–172, 24–27 Aug. 2010

  35. ALT, H., BEHRENDS, B., and BLÖMER, J. 1995. “Approximate matching of polygonal shapes.” Ann. Math. Artif. Intell. 13, 251–266.

    Article  MATH  Google Scholar 

  36. T. Eiter and H. Mannila, Computing discrete Fréchet distance, Technical Report CD-TR 94/64, Christian Doppler Laboratory for Expert Systems, TU Vienna, Austria, 1994.

    Google Scholar 

  37. Sriraghavendra, R.; Karthik, K.; Bhattacharyya, C;, “Frëchet Distance Based Approach for Searching Online Handwritten Documents,” Document Analysis and Recognition, 2007. ICDAR2007. Ninth International Conference on, vol.1, no., pp.461–465, 23–26 Sept. 2007.

    Article  Google Scholar 

  38. A. Mosig and M. Clausen. Approximately matching polygonal curves with respect to the Frechet distance. Comput. Geom, 30(2):113–127, 2005.

    Article  MathSciNet  MATH  Google Scholar 

  39. Sakoe, H. & Chiba, S. (1978) Dynamic programming algorithm optimization forspoken word recognition. IEEE Trans. Acoustics, Speech, and Signal Proc., Vol.ASSP-26, 43–49.

    Article  Google Scholar 

  40. Audet, Charles and J. E. Dennis Jr., “Analysis of Generalized Pattern Searches”, SIAM Journal on Optimization, Volume 13, Number 3, pages 889–903, 2003

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chad R. Burns.

About this article

Cite this article

Burns, C.R., Wang, R.F. & Stipanović, D.M. A Study of human and receding horizon controller performance of a remote navigation task with obstacles and feedback delays. Paladyn 2, 44–63 (2011). https://doi.org/10.2478/s13230-011-0015-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s13230-011-0015-7

Keywords

Navigation