Skip to main content
Log in

Slab waveguide with air core layer and anisotropic left-handed material claddings as a sensor

  • Original Papers
  • Published:
Opto-Electronics Review

Abstract

A three-layer slab waveguide with air core layer and anisotropic left-handed material claddings is investigated for sensing applications. Different from the waveguide mode sensors and surface plasmon resonance sensors in which the analyte is placed in the evanescent field region, the proposed sensor contains the sample in the core region that supports the oscillating field. Due to the strong concentration of the electromagnetic field in the analyte medium, the proposed device exhibits unusual sensitivity enhancement. The simulations revealed that the sensitivity improvement of TE3 mode compared to conventional evanescent wave sensor is approximately a factor of 20.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Schuster, An Introduction to the Theory of Optics, E. Arnold, London, 1909.

    Google Scholar 

  2. V.M. Agranovich and Yu.N. Gartstein, “Spatial dispersion and negative refraction of light”, Phys-Usp. 49, 1029–1044 (2006).

    Article  ADS  Google Scholar 

  3. V.G. Veselago, “The electrodynamics of substances with simultaneously negative values of ĺ and μ”, Sov. Phy. Usp. 10, 509–514 (1968).

    Article  ADS  Google Scholar 

  4. D.R. Smith, W.J. Padilla, D.C. Vier, S.C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity”, Phys. Rev. Lett. 84, 4184–4187 (2000).

    Article  ADS  Google Scholar 

  5. S.A. Taya, E.J. El-Farram, and M. M. Abadla, “Symmetric multilayer slab waveguide structure with a negative index material: TM case”, Optik — Int. J. Light Electron Opt. 123, 2264–2268 (2012).

    Article  Google Scholar 

  6. R. Güther, “Descartes ovaloides for negative refractive indices and their aplanatic cases”, Optik — Int. J. Light Electron Opt. 119, 577–583 (2008).

    Article  Google Scholar 

  7. S.A. Taya and I.M. Qadoura, “Guided modes in slab waveguides with negative index cladding and substrate”, Optik — Int. J. Light Electron Opt. 124, 1431–1436 (2013).

    Article  Google Scholar 

  8. M.A. Grado-Caffaro and M. Grado-Caffaro, “Photon mass and negative index of refraction”, Optik — Int. J. Light Electron Opt. 118, 353–354 (2007).

    Article  Google Scholar 

  9. S.A. Taya and K.Y. Elwasife, “Guided modes in a metal-clad waveguide comprising a left-handed material as a guiding layer”, Int. J. Research and Reviews in Applied Sciences 13, 294–305 (2012).

    MathSciNet  Google Scholar 

  10. I.M. Qadoura, S.A. Taya, and K.Y. El-Wasife, “Scaling rules for a slab waveguide structure comprising nonlinear and negative index materials”, Int. J. Microwave and Optical Technology 7, 349–357 (2012).

    Google Scholar 

  11. A. Grbic and G.V. Eleftheriades, “Experimental verification of backward-wave radiation from a negative refractive index metamaterial”, J. Appl. Phys. 92, 5930–5935 (2002).

    Article  ADS  Google Scholar 

  12. M.A. Abadla and S.A. Taya, “Characteristics of left-handed multilayer slab waveguide structure”, The Islamic University Journal (Series of Natural Studies and Engineering) 19, 57–70 (2011).

    Google Scholar 

  13. S.A. Taya, H.M. Kullab, and I.M. Qadoura, “Dispersion properties of slab waveguides with double negative material guiding layer and nonlinear substrate”, J. Opt. Soc. Am. B30, 2008–2013 (2013).

    Article  ADS  Google Scholar 

  14. I.V. Shadrivov, A.A. Sukhorukov, Y.S. Kivshar, A.A. Zharov, A.D. Boardman, and P. Egan, “Nonlinear surface waves in left-handed materials”, Phys. Rev. E69, 016617 (2004).

    MathSciNet  ADS  Google Scholar 

  15. M. Abadla and S.A. Taya, “Excitation of TE surface polaritons in different structures comprising a left-handed material and a metal”, Optik — Int. J. Light Electron Opt. 125, 1401–1405 (2014).

    Article  Google Scholar 

  16. K. Tiefenthaler and W. Lukosz, “Integrated optical switches and glass sensor”, Opt. Lett. 10, 137–139 (1984).

    Article  ADS  Google Scholar 

  17. R. Horvath, G. Fricsovszky, and E. Pap, “Application of the optical waveguide light mode spectroscopy to monitor lipid bilayer phase transition”, Biosens. Bioelectron. 18, 415–428 (2003).

    Article  Google Scholar 

  18. S.A. Taya and T.M. El-Agez, “Comparing optical sensing using slab waveguides and total internal reflection ellipsometry”, Turk. J. Phys. 35, 31–36 (2011).

    Google Scholar 

  19. T.M. El-Agez and S.A. Taya, “Theoretical spectroscopic scan of the sensitivity of asymmetric slab waveguide sensors”, Opt. Appl. 41, 89–95 (2011).

    Google Scholar 

  20. S.A. Taya, E.J. El-Farram, and T.M. El-Agez, “Goos Hänchen shift as a probe in evanescent slab waveguide sensors”, Int. J. Electron. Commun. (AEU) 66, 204–210 (2012).

    Article  Google Scholar 

  21. B. Kuswandi, “Simple optical fibre biosensor based on immobilized enzyme for monitoring of trace having metal ions”, Anal. Bioanal. Chem. 376, 1104–1110 (2003).

    Article  Google Scholar 

  22. S.A. Taya and T.M. El-Agez, “Slab waveguide sensor based on amplified phase change due to multiple total internal reflections”, Turk. J. Phys. 36, 67–76 (2012).

    Google Scholar 

  23. E. Udd, “An overview of fibre optic sensors”, Rev. Sci. Instrum. 66, 4015–4030 (1995).

    Article  ADS  Google Scholar 

  24. F.C. Chien and S.J. Chen, “A sensitivity comparison of optical biosensors based on four different surface plasmon resonance modes”, Biosens. Bioelectron. 20, 633–642 (2004).

    Article  Google Scholar 

  25. J. Homola, S.S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: Review”, Sens. Actuat. B54, 3–15 (1999).

    Article  Google Scholar 

  26. H.M. Kullab and S.A. Taya, “Transverse magnetic peak type metal-clad optical waveguide sensor”, Optik — Int. J. Light Electron Opt. 145, 97–100 (2014).

    Article  Google Scholar 

  27. N. Skivesen, R. Horvath, and H. Pedersen, “Optimization of metal-clad waveguide sensors”, Sens. Actuat. B106, 668–676 (2005).

    Google Scholar 

  28. H.M. Kullab, S.A. Taya, and T.M. El-Agez, “Metal-clad waveguide sensor using a left-handed material as a core layer”, J. Opt. Soc. Am. B29, 959–964 (2012).

    Article  ADS  Google Scholar 

  29. N. Skivesen, R. Horvath, and H. Pedersen, “Peak-type and dip-type metal-clad waveguide Sensing”, Opt. Lett. 30, 1659–1661 (2005).

    Article  ADS  Google Scholar 

  30. H.M. Kullab and S.A. Taya, “Peak type metal-clad waveguide sensor using negative index materials”, Int. J. Electron. Commun. 67, 905–992 (2013).

    Article  Google Scholar 

  31. S.A. Taya and T.M. El-Agez, “Optical sensors based on Fabry-Perot resonator and fringes of equal thickness structure”, Optik — Int. J. Light Electron Opt. 123, 417–421 (2012).

    Article  Google Scholar 

  32. N. Skivensen, R. Horvath, S. Thinggaaed, N.B. Larsen, and H. C. Pedersen, “Deep-probe metal-clad waveguide biosensors”, Biosens. Bioelectron. 22, 1282–128 (2007).

    Article  Google Scholar 

  33. S.A. Taya and T.M. El-Agez, “Reverse symmetry optical waveguide sensor using plasma substrate”, J. Opt. 13, 075701 (2011).

    Article  ADS  Google Scholar 

  34. A. Densmore, D.X. Xu, P. Waldron, S. Janz, P. Cheben, and J. Lapointe, “A silicon-on-insulator photonic wire based evanescent field sensor”, IEEE Photonic Tech. L. 18, 2520–2522 (2006).

    Article  ADS  Google Scholar 

  35. L.F. Shen, J.C. Qiu, and Z.H. Wang, “Guided Modes in a Slab Waveguide with Air Core Layer and Left-handed Materials Claddings”, Proc. Progress in Electromagnetics Research Symposium, Suzhou, China, 1043–1048 (2011).

    Google Scholar 

  36. S.-S. Lo, M.-S. Wang, and C.-C. Chen, “Semiconductor hollow optical waveguides formed by omni-directional reflectors”, Opt. Express 12, 6589–6593 (2004).

    Article  ADS  Google Scholar 

  37. H. Schmidt, Y. Dongliang, J.P. Barber, and A.R. Hawkins, “Hollow-core waveguides and 2-D waveguide arrays for integrated optics of gases and liquids”, IEEE J. Selected Topics in Quantum Electronics 11, 519–527 2005.

    Article  Google Scholar 

  38. K. Tiefenthaler and W. Lukosz, “Sensitivity of grating couplers as integrated-optical chemical sensors”, J. Opt. Soc. Am. B6, 209–220 (1989).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Taya.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taya, S.A. Slab waveguide with air core layer and anisotropic left-handed material claddings as a sensor. Opto-Electron. Rev. 22, 252–257 (2014). https://doi.org/10.2478/s11772-014-0201-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11772-014-0201-3

Keywords

Navigation