Skip to main content
Log in

Time-resolved multi-channel optical system for assessment of brain oxygenation and perfusion by monitoring of diffuse reflectance and fluorescence

  • Original paper
  • Published:
Opto-Electronics Review

Abstract

Time-resolved near-infrared spectroscopy is an optical technique which can be applied in tissue oxygenation assessment. In the last decade this method is extensively tested as a potential clinical tool for noninvasive human brain function monitoring and imaging. In the present paper we show construction of an instrument which allows for: (i) estimation of changes in brain tissue oxygenation using two-wavelength spectroscopy approach and (ii) brain perfusion assessment with the use of single-wavelength reflectometry or fluorescence measurements combined with ICG-bolus tracking. A signal processing algorithm based on statistical moments of measured distributions of times of flight of photons is implemented. This data analysis method allows for separation of signals originating from extra- and intracerebral tissue compartments. In this paper we present compact and easily reconfigurable system which can be applied in different types of time-resolved experiments: two-wavelength measurements at 687 and 832 nm, single wavelength reflectance measurements at 760 nm (which is at maximum of ICG absorption spectrum) or fluorescence measurements with excitation at 760 nm. Details of the instrument construction and results of its technical tests are shown. Furthermore, results of in-vivo measurements obtained for various modes of operation of the system are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F.F. Jobsis, “Noninvasive, Infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameters”. Science 198, 1264–1267 (1977).

    Article  ADS  Google Scholar 

  2. S. Wray, M. Cope, D.T. Delpy, J.S. Wyatt, and E.O. Reynolds, “Characterization of the near infrared absorption spectra of cytochrome aa3 and haemoglobin for the non-invasive monitoring of cerebral oxygenation”, Biochim Biophys Acta. 933, 184–192 (1988).

    Article  Google Scholar 

  3. A. Villringer, J. Planck, C. Hock, L. Schleinkofer, and U. Dirnagl, “Near infrared spectroscopy (NIRS): a new tool to study hemodynamic changes during activation of brain function in human adults”, Neurosci. Lett. 154, 101–104 1993).

    Article  Google Scholar 

  4. A. Villringer and B. Chance, “Non-invasive optical spectroscopy and imaging of human brain function”, Trends In Neurosciences 20, 435–442 (1997).

    Article  Google Scholar 

  5. G. Litscher and G. Schwarz, Transcranial Cerebral Oximetry, Pabst Sci. Pub. Lengerich, 1997.

    Google Scholar 

  6. A.F. Cannestra, I. Wartenburger, H. Obrig, A. Villringer, and A.W. Toga, “Functional assessment of Broca’s area using near infrared spectroscopy in humans”, Neuroreport 14, 1961–5 (2003).

    Article  Google Scholar 

  7. H. Obrig and A. Villringer, “Beyond the visible — Imaging the human brain with light”, J. Cerebr. Blood F. Met. 23, 1–18 (2003).

    Article  Google Scholar 

  8. G. Schlaug, A. Benfield, A.E. Baird, B. Siewert, K.O. Lovblad, R.A. Parker, R.R. Edelman, and S. Warach, “The ischemic penumbra: operationally defined by diffusion and perfusion MRI”, Neurolog. 53, 1528–37 (1999).

    Article  Google Scholar 

  9. K.A. Miles, “Perfusion imaging with computed tomography: brain and beyond”, Eur Radiol. 16Suppl 7, 37–43 (2006).

    Google Scholar 

  10. E. Facco, P. Zucchetta, M. Munari, F. Baratto, A.U. Behr, M. Gregianin, A. Gerunda, F. Bui, M. Saladini, and G. Giron, “99mTc-HMPAO SPECT in the diagnosis of brain death” Intens. Care Med. 24, 911–7 (1998).

    Article  Google Scholar 

  11. H.H. Abu-Judeh, R. Parker, S. Aleksic, M.L. Singh, S. Naddaf, S. Atay, M. Kumar, W. Omar, H. El-Zeftawy, J.Q. Luo, and H.M. Abdel-Dayem, “SPECT brain perfusion findings in mild or moderate traumatic brain injury”, Nucl. Med. Rev. Cent. East Eur. 3, 5–11 (2000).

    Google Scholar 

  12. U. Roelcke, “Imaging brain tumors with PET, SPECT, and ultrasonography”, Handb. Clin. Neurol. 104, 135–42 (2012).

    Article  Google Scholar 

  13. J.M. Gruner, R. Paamand, L. Hojgaard, and I. Law, “Brain perfusion CT compared with 15O-H2O-PET in healthy subjects”, EJNMMI Res. 1, 28 (2011).

    Article  Google Scholar 

  14. J.A. Wahr, K.K. Tremper, S. Samra, and D.T. Delpy, “Near-infrared spectroscopy: theory and applications”, J. Cardiothorac Vasc. Anesth. 10, 406–418 (1996).

    Article  Google Scholar 

  15. V. Quaresima, M. Ferrari, M.C.P. van der Sluijs, J. Menssen, and W. Colier, “Lateral frontal cortex oxygenation changes during translation and language switching revealed by non-invasive near-infrared multi-point measurements”, Brain Res. Bull. 59, 235–243 (2002).

    Article  Google Scholar 

  16. M. Diop, J.T. Elliott, K.M. Tichauer, T.Y. Lee, and K. St Lawrence, “A broadband continuous-wave multichannel near-infrared system for measuring regional cerebral blood flow and oxygen consumption in newborn piglets”, Rev. Sci. Instrum. 80, 054302 (2009).

    Article  ADS  Google Scholar 

  17. K. van Rossem, S. Garcia-Martinez, G. De Mulder, B. Van Deuren, K. Engelborghs, J. Van Reempts, and M. Borgers, “Brain oxygenation after experimental closed head injury. A NIRS study”, Adv. Exp. Med. Biol. 471, 209–15 (1999).

    Article  Google Scholar 

  18. Y. Murata, Y. Katayama, H. Oshima, T. Kawamata, T. Yamamoto, K. Sakatani, and S. Suzuki, “Changes in cerebral blood oxygenation induced by deep brain stimulation: study by near-infrared spectroscopy (NIRS)”, Keio J. Med. 49Suppl 1, 61–3 (2000).

    Google Scholar 

  19. R. Maniewski, A. Liebert, M. Kacprzak, and A. Zbiec, “Selected applications of near infrared optical methods in medical diagnosis”, Opto-Electron. Rev. 12, 255–262 (2004).

    Google Scholar 

  20. J.C. Hebden, S.R. Arridge, and D.T. Delpy, “Optical imaging in medicine: I. Experimental techniques”, Phys. Med. Biol. 42, 825–40 (1997).

    Article  Google Scholar 

  21. E.M. Sevick-Muraca, J.S. Reynolds, J. Lee, D. Hawrysz, A.B. Thompson, R.H. Mayer, R. Roy, and T.L. Troy, “Fluorescence lifetime imaging of tissue volumes using near- infrared frequency domain photon migration”, Photochem. Photobiol. 69, 66S–66S (1999).

    Google Scholar 

  22. J. Zhao, H.S. Ding, X.L. Hou, C.L. Zhou, and B. Chance, “In vivo determination of the optical properties of infant brain using frequency-domain near-infrared spectroscopy”, J. Biomed. Opt. 10, 024028 (2005).

    Article  ADS  Google Scholar 

  23. M.S. Patterson, B. Chance, and B.C. Wilson, “Time resolved reflectance and transmittance for the noninvasive measurements of tissue optical properties”, Appl. Opt. 28,. 2331–2336 (1989).

    Article  ADS  Google Scholar 

  24. J. Hebden, R. Kruger, and K. Wong, “Time resolved imaging trough a highly scattering medium”, Appl. Opt. 30, 788–794 (1991).

    Article  ADS  Google Scholar 

  25. J. Hebden and K. Wong, “Time-resolved optical tomography”, Appl. Opt. 32, 372–380 (1993).

    Article  ADS  Google Scholar 

  26. R.R. Alfano, S.G. Demos, and S.K. Gayen, “Advances in optical imaging of biomedical media”, Ann. NY Acad. Sci. 820, 248–70; discussion 271 (1997).

    Article  ADS  Google Scholar 

  27. R.R. Alfano, S.G. Demos, P. Galland, S.K. Gayen, Y. Guo, P.P. Ho, X. Liang, F. Liu, L. Wang, Q.Z. Wang, and W.B. Wang, “Time-resolved and nonlinear optical imaging for medical applications”, Ann NY Acad. Sci. 838, 1428 (1998).

    Google Scholar 

  28. H. Eda, I. Oda, Y. Ito, Y. Wada, Y. Oikawa, Y. Tsunazawa, M. Takada, Y. Tsuchiya, Y. Yamashita, M. Oda, A. Sas- saroli, Y. Yamada, and M. Tamura, “Multichannel time-resolved optical tomographic imaging system”, Rev. Sci. Instrum. 70, 3595–3602 (1999).

    Article  ADS  Google Scholar 

  29. S. Okawa, A. Yano, K. Uchida, Y. Mitsui, M. Yoshida, M. Takekoshi, A. Marjono, F. Gao, Y. Hoshi, I. Kida, K. Masa- moto, and Y. Yamada, “Phantom and mouse experiments of time-domain fluorescence tomography using total light approach”, Biomed Opt. Express 4, 635–51 (2013).

    Article  Google Scholar 

  30. W.M. Kuebler, A. Sckell, O. Habler, M. Kleen, G.E.H. Kuh- nle, M. Welte, K. Messmer, and A.E. Goetz, “Noninvasive measurement of regional cerebral blood flow by near-infrared spectroscopy and indocyanine green”, J. Cerebr. Blood F. Met. 18, 445–456 (1998).

    Article  Google Scholar 

  31. J. Patel, K. Marks, I. Roberts, D. Azzopardi, and A.D. Edwards, “Measurement of cerebral blood flow in newborn infants using near infrared spectroscopy with indocyanine green”, Pediatr. Res. 43, 34–9 (1998).

    Article  Google Scholar 

  32. D.W. Brown, P.A. Picot, J.G. Naeini, R. Springett, D.T. Delpy, and T.Y. Lee, “Quantitative near infrared spectroscopy measurement of cerebral hemodynamics in newborn piglets”, Pediatr. Res. 51, 564–70 (2002).

    Article  Google Scholar 

  33. J.T. Elliott, M. Diop, K.M. Tichauer, T.Y. Lee, and K. St Lawrence, “Quantitative measurement of cerebral blood flow in a juvenile porcine model by depth-resolved near-infrared spectroscopy”, J. Biomed. Opt. 15, 037014 (2010).

    Article  ADS  Google Scholar 

  34. P. Desmettre, “Diagnosis and prevention of equine infectious diseases: present status, potential, and challenges for the future” Adv. Vet. Med. 41, 359–77 (1999).

    Article  Google Scholar 

  35. M. Hope-Ross, L.A. Yannuzzi, E.S. Gragoudas, D.R. Guyer, J.S. Slakter, J.A. Sorenson, S. Krupsky, D.A. Orlock, and C.A. Puliafito, “Adverse reactions due to indocyanine green”, Ophthalmology 101, 529–33 (1994).

    Article  Google Scholar 

  36. R. Springett, Y. Sakata, and D.T. Delpy, “Precise measurement of cerebral blood flow in newborn piglets from the bolus passage of indocyanine green”, Phys. Med. Biol. 46, 2209–25 (2001).

    Article  Google Scholar 

  37. E. Keller, A. Nadler, H. Alkadhi, S.S. Kollias, Y. Yonekawa, and P. Niederer, “Noninvasive measurement of regional cerebral blood flow and regional cerebral blood volume by near-infrared spectroscopy and indocyanine green dye dilution”, Neuroimage 20, 828–39 (2003).

    Article  Google Scholar 

  38. C. Terborg, S. Bramer, S. Harscher, M. Simon, and O.W. Witte, “Bedside assessment of cerebral perfusion reductions in patients with acute ischaemic stroke by near-infrared spectroscopy and indocyanine green”, J. Neurol. Neurosurg. Psychiatry 75, 38–42 (2004).

    Google Scholar 

  39. A. Liebert, H. Wabnitz, J. Steinbrink, M. Moller, R. Macdon- ald, H. Rinneberg, A. Villringer, and H. Obrig, “Bed-side assessment of cerebral perfusion in stroke patients based on optical monitoring of a dye bolus by time-resolved diffuse reflectance”, Neuroimage 24, 426–35 (2005).

    Article  Google Scholar 

  40. O. Steinkellner, C. Gruber, H. Wabnitz, A. Jelzow, J. Steinbrink, J.B. Fiebach, R. Macdonald, and H. Obrig, “Optical bedside monitoring of cerebral perfusion: technological and methodological advances applied in a study on acute ischemic stroke”, J. Biomed. Opt. 15, 061708 (2010).

    Article  ADS  Google Scholar 

  41. A. Liebert, P. Sawosz, D. Milej, M. Kacprzak, W. Weigl, M. Botwicz, J. Maczewska, K. Fronczewska, E. Mayzner-Zawadzka, L. Krolicki, and R. Maniewski, “Assessment of inflow and washout of indocyanine green in the adult human brain by monitoring of diffuse reflectance at large source-detector separation”, J. Biomed. Opt. 16, 046011 (2011).

    Article  ADS  Google Scholar 

  42. A. Liebert, H. Wabnitz, H. Obrig, R. Erdmann, M. Moller, R. Macdonald, H. Rinneberg, A. Villringer, and J. Steinbrink, “Non-invasive detection of fluorescence from exogenous chromophores in the adult human brain”, Neuroimage 31, 600–8 (2006).

    Article  Google Scholar 

  43. J. Steinbrink, A. Liebert, H. Wabnitz, R. Macdonald, H. Obrig, A. Wunder, R. Bourayou, T. Betz, J. Klohs, U. Lindauer, U. Dirnagl, and A. Villringer, “Towards noninvasive molecular fluorescence imaging of the human brain”, Neurodegener. Dis. 5, 296–303 (2008).

    Article  Google Scholar 

  44. A. Jelzow, H. Wabnitz, H. Obrig, R. Macdonald, and J. Steinbrink, “Separation of indocyanine green boluses in the human brain and scalp based on time-resolved in-vivo fluorescence measurements”, J. Biomed. Opt. 17, 057003 (2012).

    Article  ADS  Google Scholar 

  45. D. Milej, A. Gerega, N. Zolek, W. Weigl, M. Kacprzak, P. Sawosz, J. Maczewska, K. Fronczewska, E. Mayzner-Za- wadzka, L. Krolicki, R. Maniewski, and A. Liebert, “Time-resolved detection of fluorescent light during inflow of ICG to the brain-a methodological study”, Phys. Med. Biol. 57, 6725–42 (2012).

    Article  Google Scholar 

  46. A. Gerega, D. Milej, W. Weigl, M. Botwicz, N. Zolek, M. Kacprzak, W. Wierzejski, B. Toczylowska, E. Mayzner-Zawadzka, R. Maniewski, and A. Lieber, “Multi-wavelength time-resolved detection of fluorescence during the inflow of indocyanine green into the adult’s brain”, J. Biomed. Opt. 17, 087001 (2012).

    Article  ADS  Google Scholar 

  47. W. Weigl, D. Milej, A. Gerega, B. Toczylowska, M. Kac- przak, P. Sawosz, M. Botwicz, R. Maniewski, E. Mayzner-Zawadzka, and A. Lieber, “Assessment of cerebral perfusion in post-traumatic brain injury patients with the use of ICG-bolus tracking method”, Neuroimage 85, 555–565 (2014).

    Article  Google Scholar 

  48. M. Kacprzak, A. Liebert, P. Sawosz, N. Żołek, and R. Maniewski, “Time-resolved optical imager for assessment of cerebral oxygenation”, J. Biomed. Opt. 12, 034019 (2007).

    Article  ADS  Google Scholar 

  49. D. Milej, M. Kacprzak, N. Żołek, P. Sawosz, R. Maniewski, and A. Liebert, An Instrument for Monitoring Inflow and Washout of An Optical Contrast Agent into The Brain, in Information Technologies in Biomedicine, E. Pietka and J. Kawa Editors, pp. 85–90, Springer Berlin / Heidelberg: Berlin, 2010.

  50. D. Milej, M. Kacprzak, N. Zolek, A. Liebert, and R. Maniewski, “Advantages of fluorescence over diffuse reflectance measurements tested in phantom experiments with dynamic inflow of ICG”, Opto-Electron. Rev. 18, 208–213 (2010).

    Article  ADS  Google Scholar 

  51. A. Liebert, H. Wabnitz, D. Grosenick, and R. Macdonald, “Fibre dispersion in time domain measurements compromising the accuracy of determination of optical properties of strongly scattering media”, J. Biomed. Opt. 8, 512–516 (2003).

    Article  ADS  Google Scholar 

  52. M.S. Patterson and B.W. Pogue, “Mathematical model for time-resolved and frequency-domain fluorescence spectroscopy in biological tissues”, Appl. Opt. 33, 1963–74 (1994).

    Article  ADS  Google Scholar 

  53. A. Liebert, H. Wabnitz, D. Grosenick, M. Moller, R. Mac- donald, and H. Rinneberg, “Evaluation of optical properties of highly scattering media by moments of distributions of times of flight of photons”, Appl. Opt. 42, 5785–92 (2003).

    Article  ADS  Google Scholar 

  54. W. Becker, Advanced Time-Correlated Single Photon Counting Techniques, Chemical Physics Berlin Heidelberg: Springer-Verlag, 2005.

    Book  Google Scholar 

  55. A. Liebert, H. Wabnitz, J. Steinbrink, H. Obrig, M. Moller, R. Macdonald, A. Villringer, and H. Rinneberg, “Time-resolved multidistance near-infrared spectroscopy of the adult head: intracerebral and extracerebral absorption changes from moments of distribution of times of flight of photons”, Appl. Opt. 43, 3037–3047 (2004).

    Article  ADS  Google Scholar 

  56. M. Jager and A. Kienle, “Non-invasive determination of the absorption coefficient of the brain from time-resolved reflectance using a neural network”, Phys. Med. Biol. 56, 139–144 (2011).

    Article  Google Scholar 

  57. N. Zolek, A. Liebert, D. Milej, M. Kacprzak, A. Torricelli, D. Contini, L. Spinelli, M. Caffini, L. Zucchelli, R. Cubeddu, A. Jelzow, O. Steinkellner, H. Wabnitz, S. Koch, J. Stein- brink, and W. Weigl, “Comparative study of algorithms to derive changes in hemoglobin concentrations from time domain near infrared spectroscopy measurements” in Eur. Conf. Biomed. Opt., Munich, 2011

    Google Scholar 

  58. A. Pifferi, A. Torricelli, A. Bassi, P. Taroni, R. Cubeddu, H. Wabnitz, D. Grosenick, M. Moller, R. Macdonald, J. Swart- ling, T. Svensson, S. Andersson-Engels, R.L. van Veen, H.J. Sterenborg, J.M. Tualle, H.L. Nghiem, S. Avrillier, M. Whe- lan, and H. Stamm, “Performance assessment of photon migration instruments: the MEDPHOT protoco”, Appl. Opt. 44, 2104–2014 (2005).

    Article  ADS  Google Scholar 

  59. H. Obrig, T. Wolf, C. Doge, J.J. Hulsing, U. Dirnagl, and A. Villringer, “Cerebral oxygenation changes during motor and somatosensory stimulation in humans, as measured by near-infrared spectroscopy”, Adv. Exp. Med. Biol. 388, 219–224 (1996).

    Article  Google Scholar 

  60. V. Toronov, M.A. Franceschini, M. Filiaci, S. Fantini, M. Wolf, A. Michalos, and E. Gratton, “Near-infrared study of fluctuations in cerebral hemodynamics during rest and motor stimulation: temporal analysis and spatial mapping”, Med. Phys. 27, 801–815 (2000).

    Article  Google Scholar 

  61. G. Strangman, J.P. Culver, J.H. Thompson, and D.A. Boas, “A quantitative comparison of simultaneous BOLD fMRI and NIRS recordings during functional brain activation”, Neuroimage 17, 719–731 (2002).

    Article  Google Scholar 

  62. T.J. Huppert, R.D. Hoge, S.G. Diamond, M.A. Franceschini, and D.A. Boas, “A temporal comparison of BOLD, ASL, and NIRS hemodynamic responses to motor stimuli in adult humans”, Neuroimage 29, 368–382 (2006).

    Article  Google Scholar 

  63. M. Butti, D. Contini, E. Molteni, M. Caffini, L. Spinelli, G. Baselli, A.M. Bianchi, S. Cerutti, R. Cubeddu, and A. Torricelli, “Effect of prolonged stimulation on cerebral hemodynamic: a time-resolved fNIRS study”, Med. Phys. 36, 4103–4114 (2009).

    Article  Google Scholar 

  64. L. Holper, M. Biallas, and M. Wolf, “Task complexity relates to activation of cortical motor areas during uni- and bimanual performance: a functional NIRS study”, Neuroimage 46, 1105–1113 (2009).

    Article  Google Scholar 

  65. H. Wabnitz, M. Moeller, A. Liebert, H. Obrig, J. Steinbrink, and R. Macdonald, “Time-resolved near-infrared spectroscopy and imaging of the adult human brain”, Adv. Exp. Med. Biol. 662, 143–148 (2010).

    Article  Google Scholar 

  66. L. Gagnon, M.A. Yucel, M. Dehaes, R.J. Cooper, K.L. Perdue, J. Selb, T.J. Huppert, R.D. Hoge, and D.A. Boas, “Quantification of the cortical contribution to the NIRS signal over the motor cortex using concurrent NIRS-fMRI measurements”, Neuroimage 59, 3933–3940 (2012).

    Article  Google Scholar 

  67. H. Karim, S.I. Fuhrman, P. Sparto, J. Furman, and T. Huppert, “Functional brain imaging of multi-sensory vestibular processing during computerized dynamic posturography using near-infrared spectroscopy”, Neuroimage 74C, 318–325 (2013).

    Article  Google Scholar 

  68. M. Kacprzak, A. Liebert, W. Staszkiewicz, A. Gabrusiewicz, P. Sawosz, G. Madycki, and R. Maniewski, “Application of a time-resolved optical brain imager for monitoring cerebral oxygenation during carotid surgery”, J. Biomed. Opt. 17, 016002 (2012).

    Article  ADS  Google Scholar 

  69. A. Pifferi, A. Torricelli, L. Spinelli, D. Contini, R. Cubeddu, F. Martelli, G. Zaccanti, A. Tosi, A. Dalla Mora, F. Zappa, and S. Cova, “Time-resolved diffuse reflectance using small source-detector separation and fast single-photon gating”, Phys. Rev. Lett. 100, 138101 (2008).

    Article  ADS  Google Scholar 

  70. M. Mazurenka, A. Jelzow, H. Wabnitz, D. Contini, L. Spi- nelli, A. Pifferi, R. Cubeddu, A.D. Mora, A. Tosi, F. Zappa, and R. Macdonald, “Non-contact time-resolved diffuse reflectance imaging at null source-detector separation”, Opt. Express 20, 283–290 (2012).

    Article  ADS  Google Scholar 

  71. P. Sawosz, N. Zolek, M. Kacprzak, R. Maniewski, and A. Liebert, “Application of time-gated CCD camera with image intensifier in contactless detection of absorbing inclusions buried in optically turbid medium which mimic local changes in oxygenation of the brain tissue”, Opto-Electron. Rev. 20, 309–314 (2012).

    Article  ADS  Google Scholar 

  72. J. Selb, D.K. Joseph, and D.A. Boas, “Time-gated optical system for depth-resolved functional brain imaging”, J. Biomed. Opt. 11, 044008 (2006).

    Article  ADS  Google Scholar 

  73. P. Poulet, W. Uhring, W. Hanselmann, R. Glazenborg, F. Nouizi, V. Zint, and W. Hirschi, “A time-gated near-infrared spectroscopic imaging device for clinical applications” in Proc. SPIE 8565, 85654M (2013).

    Article  Google Scholar 

  74. P. Sawosz, M. Kacprzak,W. Weigl, A. Borowska-Solonynko, P. Krajewski, N. Zolek, B. Ciszek, R. Maniewski, and A. Liebert, “Experimental estimation of the photons visiting probability profiles in time-resolved diffuse reflectance measurement”, Phys. Med. Biol. 57, 7973–7981 (2012).

    Article  Google Scholar 

  75. J.C. Hebden, A. Gibson, T. Austin, R.M. Yusof, N. Everdell, D.T. Delpy, S.R. Arridge, J.H. Meek, and J.S. Wyatt, “Imaging changes in blood volume and oxygenation in the newborn infant brain using three-dimensional optical tomography”, Phys. Med. Biol. 49, 1117–1130 (2004).

    Article  Google Scholar 

  76. M. Diop, K.M. Tichauer, J.T. Elliott, M. Migueis, T.Y. Lee, and K. St Lawrence, “Comparison of time-resolved and continuous-wave near-infrared techniques for measuring cerebral blood flow in piglets”, J. Biomed. Opt. 15, 057004 (2010).

    Article  ADS  Google Scholar 

  77. B. Montcel, R. Chabrier, and P. Poulet, “Detection of cortical activation with time-resolved diffuse optical methods”, Appl. Opt. 44, 1942–1947 (2005).

    Article  ADS  Google Scholar 

  78. D. Contini, A. Torricelli, A. Pifferi, L. Spinelli, F. Paglia, and R. Cubeddu, “Multi-channel time-resolved system for functional near infrared spectroscopy”, Opt. Express 14, 5418–5432 (2006).

    Article  ADS  Google Scholar 

  79. L. Ostergaard, “Cerebral perfusion imaging by bolus tracking”, Top Magn. Reson. Imaging 15, 3–9 (2004).

    Article  Google Scholar 

  80. L. Ostergaard, “Principles of cerebral perfusion imaging by bolus tracking”, J. Magn. Reson. Imaging 22, 710–717 (2005).

    Article  Google Scholar 

  81. J. Woitzik, P.G. Pena-Tapia, U.C. Schneider, P. Vajkoczy, and C. Thome, “Cortical perfusion measurement by indocyanine-green videoangiography in patients undergoing hemicraniectomy for malignant stroke”, Stroke 37, 1549–5151 (2006).

    Article  ADS  Google Scholar 

  82. A. Gerega, N. Zolek, T. Soltysinski, D. Milej, P. Sawosz, B. Toczylowska, and A. Liebert, “Wavelength-resolved measurements of fluorescence lifetime of indocyanine green”, J. Biomed. Opt. 16, 067010 (2011).

    Article  ADS  Google Scholar 

  83. A. Oldag, M. Goertler, A.K. Bertz, S. Schreiber, C. Stoppel, H.J. Heinze, and K. Kopitzki, “Assessment of cortical hemodynamics by multichannel near-infrared spectroscopy in steno-occlusive disease of the middle cerebral artery”, Stroke 43, 2980–2985 (2012).

    Article  Google Scholar 

  84. J.T. Elliott, D. Milej, A. Gerega, W. Weigl, M. Diop, L.B. Morrison, T.Y. Lee, A. Liebert, and K. St Lawrence, “Variance of time-of-flight distribution is sensitive to cerebral blood flow as demonstrated by ICG bolus-tracking measurements in adult pigs”, Biomed. Opt. Express 4, 206–218 (2013).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Milej.

About this article

Cite this article

Milej, D., Gerega, A., Kacprzak, M. et al. Time-resolved multi-channel optical system for assessment of brain oxygenation and perfusion by monitoring of diffuse reflectance and fluorescence. Opto-Electron. Rev. 22, 55–67 (2014). https://doi.org/10.2478/s11772-014-0178-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11772-014-0178-y

Keywords

Navigation