Skip to main content

Advertisement

Log in

Assessment of yield based selection under managed field stress condition for breeding for rice yield improvement under drought

  • Review
  • Section Botany
  • Published:
Biologia Aims and scope Submit manuscript

Abstract

The progress in development and dissemination of drought tolerant lines has been slow as compared to the increasing drought prevalence in the rice growing regions. Significant amount of work has been done in the past on drought resistance traits in rice crop, still the benefit of improved drought tolerant rice cultivars reaching the farmer’s field is not very high and ways to expedite the development of drought tolerant and productive rice cultivars needs to be addressed. In this article, an assessment of easily practicable approach of managed stress screening and prospect of direct selection for yield under drought stress is discussed. Also the large effect yield QTLs identified for grain yield under drought stress field conditions is being reviewed for successful introgression into elite genetic background for developing drought tolerant cultivars with improved yield for the drought prone target environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adamchuk V.I., Hummel J.W., Morgan M.T. & Upadhyaya S.K. 2004. On-the-go soil sensors for precision agriculture. Comp. Electr. Agric. 44: 71–91.

    Article  Google Scholar 

  • Atlin G.N., 2004. Improving drought tolerance by selecting for yield, pp. 14–22. In: Fischer K.S., Lafitte R., Fukai S., Atlin G. & Hardy, B. (eds), Breeding Rice for Drought-prone Environments, International Rice Research Institute, Los Banos, Philippines.

    Google Scholar 

  • Babu C.R., Nguyen B.D., Chamarerk V., Shanmugasundaram P., Chezhian P., Jeyaprakash P., Ganesh S.K., Palchamy A., Sadasivam S., Sarkarung S., Wade L.J. & Nguyen H.T. 2003. Genetic analysis of drought resistance in rice by molecular markers: association between secondary traits and field performance. Crop. Sci. 43: 1457–1469.

    Article  CAS  Google Scholar 

  • Banziger M., Setimela Peter S., Hodson D. & Vivek B. 2006. Breeding for improved abiotic stress tolerance in maize adapted to southern Africa. Agric. Water Manag. 80: 212–224.

    Article  Google Scholar 

  • Bernier J., Kumar A., Venuprasad R., Spaner D. & Atlin G. 2007. A large-effect QTL for Grain yield under reproductive-stage drought stress in upland rice. Crop Sci. 47: 507–516.

    Article  Google Scholar 

  • Bernier J., Serraj R., Kumar A., Venuprasad R., Impa S., Gowda V., Owane R., Spaner D. & Atlin G. 2009. Increased water uptake explains the effect of qtl12.1, a large-effect drought resistance QTL in upland rice. Field Crops Res. 110: 139–146.

    Article  Google Scholar 

  • Blum A. 1998. Improving wheat grain filling under stress by stem reserve mobilization. Euphytica 100: 77–83.

    Article  Google Scholar 

  • Blum A. 2005. Drought resistance, water use efficiency, and yield potential-are they compatible, dissonant, or mutually exclusive? Aust. J. Agric. Res. 56: 1159–1168.

    Article  Google Scholar 

  • Cairns J.E., Impa S.M., O’Toole J.C., Jagadish S.V.K., & Price A.H. 2011. Influence of the soil physical environments on rice (Oryza sativa L.) response to drought stress and its implications for drought research. Field Crops Res. 121: 303–310.

    Article  Google Scholar 

  • Centritto M., Lauteri M., Monteverdi M.C. & Serraj R. 2009. Leaf gas exchange, carbon isotope discrimination and grain yield in contrasting rice genotypes subjected to water deficits during reproductive stage. J. Exp. Bot. 60: 2325–2339.

    Article  PubMed  CAS  Google Scholar 

  • Chenu K., Chapman S.C., Hammer G.L., Mclean G., Ben Haj Salah H. & Tardieu F. 2008. Short-term responses of leaf growth rate to water deficit scale up to whole-plant and crop levels: an integrated modeling approach in maize. Plant Cell Environ. 31: 378–391.

    Article  PubMed  Google Scholar 

  • Cooper M., Stucker R.E., DeLacy I.H. & Harch B.D. 1997. SWheat breeding nurseries, target environments, and indirect selection for grain yield. Crop Sci. 37: 1168–1176.

    Article  Google Scholar 

  • Courtois B., Ahmadi N., Khowaja F., Price A., Rami J.F., Frouin J., Hamelin C. & Ruiz M. 2009. Rice root genetic architecture: meta-analysis from a QTL database improves resolution to a few candidate genes. Rice 2: 115–128.

    Article  Google Scholar 

  • Dixit S., Swamy B.P., Vikram P., Ahmed H.U., Sta Cruz M.T., Amante M., Atri D., Leung H. & Kumar A. 2012. Fine mapping of QTLs for rice grain yield under drought reveals sub-QTLs conferring a response to variable drought severities. Theor. Appl. Genet. 125: 155–169.

    Article  PubMed  Google Scholar 

  • Fischer K.S., Fukai S., Lafitte R. & McLaren G. 2004. Know your target environment, pp. 5–11. In: Fischer K.S., Lafitte R. Fukai S., Atlin, G. & Hardy B. (eds), Breeding Rice for Drought-prone Environments. International Rice Research Institute, Los Banos, Philippines.

    Google Scholar 

  • Fischer K.S., Fukai S., Kumar A., Leung H. & Jongdee B. 2012. Field phenotyping strategies and breeding for adaptation of rice to drought. Frontiers Physiol 3: doi: 10.3389/fphys.2012.00282.

  • Fukai S. & Cooper M. 1995. Development of drought-resistant cultivars using physiomorphological traits in rice. Field Crops Res. 40: 67–86.

    Article  Google Scholar 

  • Garrity D.P. & O’Toole J.C. 1995. Selection for reproductive stage drought avoidance in rice, using infrared thermometry. Agron. J. 87: 773–779.

    Article  Google Scholar 

  • Gomez S.M., Kumar S.S., Jeyaprakash P., Suresh R., Biji K.R., Boopathi N.M., Price A.H. & Babu R.C. 2006. Mapping QTL linked to physio-morphological and plant production traits under drought stress in rice (Oryza sativa L.) in the target environment. Am. J. Biochem. Biotechnol. 2: 161–169

    Article  Google Scholar 

  • Guan Y.S., Seeraj R., Liu S.H., Xu J.L., Ali J., Wang W.S., Venus E., Zhu L.H. & Li Z.K. 2010. Simultaneously improving yield under drought stress and non-stress conditions: a case study of rice (Oryza sativa L.). J. Exp. Bot. 61: 4145–4156.

    Article  PubMed  CAS  Google Scholar 

  • Hammer G.L., Butler D., Muchow R.C. & Meinke H. 1996. Integrating physiological understanding and plant breeding via crop modelling and optimization, pp. 419–441. In: Cooper M. & Hammer G.L. (eds), Plant Adaptation and Crop Improvement, CAB International, ICRISAT & IRRI.

    Google Scholar 

  • Harve P. & Serraj R. 2009. Gene technology and drought: a simple solution for a complex trait? Afr. J. Biotechnol. 8: 1740–1749.

    Google Scholar 

  • Hayashi S., Kamoshita A., Yamagishi J., Kotchasatit A. & Jongdee B. 2007. Genotypic difference in grain yield of transplanted and direct seeded rainfed lowland rice (Oryza sativa L.) in northeast Thailand. Field Crops Res. 102: 9–21.

    Article  Google Scholar 

  • Henry A., Gowda V.R.P., Torres R.O., McNally K.L. & Serraj R. 2011. Variation in root system architecture and drought response in rice (Oryza sativa): Phenotyping of the Oryza-SNP panel in rainfed lowland fields. Field Crops Res. 120: 205–214.

    Article  Google Scholar 

  • Hijmans R.J. & Serraj R. 2009. Modeling spatial and temporal variation of drought in rice production, pp. 19–31. In: Serraj J., Bennett J., Hardy B. (eds), Drought frontiers in rice: crop improvement for increased rainfed production, World scientific Publishing, Singapore.

    Chapter  Google Scholar 

  • Ingram K.T., Bueno F.D. Namuco O.S. Yambao E.B. & Beyrouty C.A. 1994. Rice root traits for drought resistance and their genetic variation. In: Kirk G.J.D. (ed.), Rice Roots: Nutrient and Water Use. International Rice Research Institute, Manila, Philippines.

    Google Scholar 

  • Jagadish Krishna S.V., Cairns Jill E., Kumar A., Somayanda Impa M. & Craufurd Peter Q. 2011. Does susceptibility to heat stress confound screening for drought tolerance in rice? Funct. Plant Biol. 38: 261–269.

    Article  Google Scholar 

  • Jones H.G. 1999. Use of thermography for quantitative studies of spatial and temporal variation of stomatal conductance over leaf surfaces. Plant Cell Environ. 22: 1043–1055.

    Article  Google Scholar 

  • Jones H.G., Serraj R., Loveys B.R., Xiong L., Wheaton A. & Price A. 2009. Thermal infrared imaging of crop canopies for the remote diagnosis and quantification of plant responses to water stress in the field. Funct. Plant Biol. 36: 978–989.

    Article  Google Scholar 

  • Kamoshita A., Chandra Babu R., Boopathi N.M. & Fukai S. 2008. Phenotypic and genotypic analysis of droughtresistance traits for development of rice cultivars adapted to rainfed environments. Field Crops Res. 109: 1–23.

    Article  Google Scholar 

  • Khowaja F.S., Norton G.J., Courtois B. & Price A.H. 2009. Improved resolution in the position of drought-related QTLs in a single mapping population of rice by meta-analysis. BMC Genomics 10: 276.

    Article  PubMed  Google Scholar 

  • Kumar A., Bernier J., Verulkar S., Lafitte H.R. & Atlin G.N. 2008. Breeding for drought tolerance: direct selection for yield, response to selection and use of drought-tolerant donors in upland and lowland-adapted populations. Field Crops Res. 107: 221–231.

    Article  Google Scholar 

  • Kumar A., Verulkar S., Dixit S., Chauhan B., Bernier, J., Venuprasad R., Zhao, D. & Srivastava M.N. 2009. Yield and yield-attributing traits of rice (Oryza sativa L.) under lowland drought and suitability of early vigor as a selection criterion. Field Crops Res. 114: 99–107.

    Article  Google Scholar 

  • Kumar A., Verulkar S.B., Mandal N.P., Variar M., Shukla V.D., Dwivedi J.L., Singh B.N., Singh O.N., Swain P., Mall A.K., Robin S., Chandrababu R., Jain A., Haefele S.M., Piepho H.P. & Raman A. 2012. High-yielding, drought-tolerant, stable rice genotypes for the shallow rainfed lowland droughtprone ecosystem. Field Crops Res. 133: 37–47.

    Article  Google Scholar 

  • Lafitte H.R., Price A.H. & Courtois B. 2004. Yield response to water deficit in an upland rice mapping population: associations among traits and genetic markers. Theor. Appl. Genet. 109: 1237–1246.

    Article  PubMed  CAS  Google Scholar 

  • Lanceras J.C., Pantuwan G.P., Jongdee B. & Toojinda T. 2004. Quantitative trait loci associated with drought tolerance at reproductive stage in rice. Plant Physiol. 135: 384–399.

    Article  PubMed  CAS  Google Scholar 

  • Lande R. & Thompson R. 1990. Efficiency of marker-assisted selection in the improvement of quantitative traits. Genetics 124: 743–756

    PubMed  CAS  Google Scholar 

  • Liu H.Y., Mei H.W., Yu X., Zhu G.H., Lin G.L. & Luo L.J. 2006. Towards improving the drought tolerance of rice in China. Plant Gen. Resour. 4: 47–53.

    Article  CAS  Google Scholar 

  • Luo L.J. 2010. Breeding for water-saving and drought resistance rice (WDR) in China. J. Exp. Bot. 61: 3509–3517.

    Article  PubMed  CAS  Google Scholar 

  • Mackill D., Coffman W. & Garrity D. 1996. Rainfed Lowland Rice Improvement. International Rice Research Institute, Manila, Philippines, 242pp.

    Google Scholar 

  • Ogawa, A., Kawashima C. & Yamauchi A. 2005. Sugar accumulation along the seminal root axis, as affected by osmotic stress in maize: a possible physiological basis for plastic lateral root development. Plant Prod. Sci. 8: 173–180.

    Article  Google Scholar 

  • Pandey S., Behura D., Villano R. & Naik D. 2000. Economic Cost of Drought and Farmers’ Coping Mechanisms: A Study of Rainfed Rice in Eastern India. IRRI Discussion Paper Series, pp. 1–35.

    Google Scholar 

  • Pantuwan G., Fukaib S., Cooper M., Rajatasereekul S., O’Toole J.C. & Basnayake J. 2004. Yield response of rice (Oryza sativa L.) genotypes to drought under rainfed lowlands: 4. Vegetative stage screening in the dry season. Field Crops Res. 89: 281–297.

    Article  Google Scholar 

  • Price A.H. & Courtois B. 1999. Mapping QTLs associated with drought resistance in rice: progress, problems and prospects. Plant Growth Regul. 29: 123–133.

    Article  CAS  Google Scholar 

  • Price A.H., Cairns J.E., Horton P., Jones H.G. & Griffiths H. 2002. Linking drought-resistance mechanisms to drought avoidance in upland rice using a QTL approach: progress and new opportunities to integrate stomatal and mesophyll responses. J. Exp. Bot. 53: 989–1004.

    Article  PubMed  CAS  Google Scholar 

  • Richards R.A. 1996. Defining selection criteria to improve yield under drought. Plant Growth Regul. 20: 157–166.

    Article  CAS  Google Scholar 

  • Serraj R., McNally L., Kenneth L., Loedin-Slamet I., Kohli A., Haefele S.M., Atlin G. & Kumar A. 2011. Drought resistance improvement in rice: An integrated genetic and resource management strategy. Plant Prod. Sci. 14: 1–14.

    Article  Google Scholar 

  • Sinclair T.R. & Muchow R.C. 2001. System analysis of plant traits to increase grain yield on limited water supplies. Agron. J. 93: 263–270

    Article  Google Scholar 

  • Steele K.A, Edwards G., Zhu J. & Witcombe J.R. 2004. Markerevaluated selection in rice: shifts in allele frequency among bulks selected in contrasting agricultural environments identify genomic regions of importance to rice adaptation and breeding. Theor. Appl. Genet. 109: 1247–1260.

    Article  PubMed  CAS  Google Scholar 

  • Steele K.A, Price A.H., Witcombe J.R., Shrestha R., Singh B.N., Gibbons J.M. & Virk D.S. 2012. QTLs associated with root traits increase yield in upland rice when transferred through marker-assisted selection. Theor. Appl. Genet. Doi: 10.1007/s00122-012-1963-y.

    Google Scholar 

  • Swamy B.P.M., Vikram P., Dixit S., Ahmed H.U. & Kumar A. 2011. Meta-analysis of grain yield QTL identified during agricultural drought in grasses showed consensus. BMC Genomics. 12: 319

    Article  PubMed  Google Scholar 

  • Venuprasad R., Lafitte H.R. & Atlin GN. 2007. Response to direct selection for grain yield under drought stress in Rice. Crop Sci. 47: 285–293.

    Article  Google Scholar 

  • Venuprasad R., Sta Cruz M.T., Amante M., Magbanua R., Kumar A. & Atlin G.N. 2008. Response to two cycles of divergent selection for Grain Yield under drought stress in four rice breeding populations. Field Crops Res. 107: 232–244.

    Article  Google Scholar 

  • Venuprasad R., Dalid C.O., Del Valle M., Zhaou D., Espiritu M., Sta Cruz M.T., Amante M., Kumar A. & Atlin G.N. 2009. Identification and characterization of large-effect quantative trait loci for grain yield under lowland drought stress in rice using bulk-segregant analysis. Theor. Appl. Genet. 120: 177–190.

    Article  PubMed  Google Scholar 

  • Verulkar S.B., Mandal N.P., Dwivedi J.L., Singh B.N., Sinha P.K., Mahato R.N., Dongre P., Singh O.N., Bose L.K., Swain P., Robin S., Chandrababu R., Senthil S., Jain A., Shashidhar H.E., Hittalmani S., Vera Cruz C., Paris T., Raman A., Haefele S., Seeraj R., Atlin G. & Kumar A. 2010. Breeding resilient and productive genotypes adapted to drought-prone rainfed ecosystem of India. Field Crops Res. 117: 197–208.

    Article  Google Scholar 

  • Vikram P., Swamy B.P.M., Dixit S., Ahmed H.U., Sta Cruz M.T., Singh A.K. & Kumar A. 2011. qDTY 1.1, a major QTL for rice grain yield under reproductive-stage drought stress with a consistent effect in multiple elite genetic backgrounds. BMC Genetics. Doi: 10.1186/1471-2156-12-89.

    Google Scholar 

  • Wang H., Inukai Y., Kamoshita A. & Wade L.J. Siopongco, J.D.L.C. Nguyen H. & Yamauchi A. 2005. QTL analysis on plasticity in lateral root development in response to water stress in the rice plant. pp. 464–469. In: Toriyama K., Heong K.L. & Hardy B. (eds), Rice is Life: scientific perspectives for the 21st century. Proceedings of the World Rice Conference.

    Google Scholar 

  • Wassmann R., Jagadish S.V.K., Sumfleth K., Pathak H., Howell G., Ismail A., Serraj R., Redoña E., Singh R.K. & Heuer S. 2009. Regional vulnerability of climate change impacts on Asian rice production and scope for adaptation. Adv. Agron. 102: 91–133.

    Article  Google Scholar 

  • Yamauchi Y., Pardales J.R. & Kono Y. 1996. Root system structure and its relation to stress tolerance. In: Ito, O., et al. (eds), Roots and Nitrogen in cropping systems of the Semi-Arid tropics. JIRCAS Publication. Tsukuba, Japan.

    Google Scholar 

  • Yang J.C., Zhang J.H., Liu L.J., Wang Z.Q. & Zhu Q.S. 2002. Carbon remobilization and grain filling in Japonica/Indica hybrid rice subjected to postanthesis water deficits. Agron. J. 94: 102–109.

    Article  Google Scholar 

  • Yue B., Xiong L., Xue W., Xing Y., Luo L. & Xu C. 2005. Genetic analysis for drought resistance of rice at reproductive stage in field with different types of soil. Theor. Appl. Genet. 111: 1127–1136.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abhinav Jain.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jain, A., Balaravi, P. & Shenoy, V. Assessment of yield based selection under managed field stress condition for breeding for rice yield improvement under drought. Biologia 68, 569–576 (2013). https://doi.org/10.2478/s11756-013-0194-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11756-013-0194-2

Key words

Navigation