Skip to main content
Log in

Evaluation of fatty acid composition among selected amaranth grains grown in two consecutive years

  • Section Cellular and Molecular Biology
  • Published:
Biologia Aims and scope Submit manuscript

Abstract

The oil of amaranth grain (Amaranthus spp.) is a rich source of poly-unsaturated fatty acids. In this study, we tested 10 amaranth samples representing two species (Amaranthus cruentus and Amaranthus hypochondriacus) in two consecutive years (2010, 2011). Grain oils were analysed by gas chromatography for their fatty acids profile. In 2010, oil content ranged from 6.4–8.2% for A. cruentus and 6.3–7.9% for A. hypochondriacus. In 2011, the level was 7.1–8.2% and 6.6–8.7% for A. cruentus and A. hypochondriacus, respectively. Linoleic, palmitic, and oleic acids were dominant fatty acids in all of the oil samples. The essential linoleic acid level was 33.3–38.7% (A. cruentus) and 31.7–47.5% (A. hypochondriacus) in 2010 and 34.6–39.9% (A. cruentus) and 34–44.5% (A. hypochondriacus) in 2011. The minority fatty acids, i.e. stearic, α-linolenic, and arachidic acids were also observed. Eicosenoic and behenic acids were present in the grain in trace amounts. Statistical evaluation showed a significant effect of year and species of amaranth on the levels of certain fatty acids. There was a strong positive correlation between oil content and oleic acid, and a negative correlation between oleic acid and either of the other two fatty acids, linoleic and α-linolenic ones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ANOVA:

analysis of variance

GC-FID:

gas chromatography with flame ionisation detector

MUFA:

monounsaturated fatty acids

OA/LA:

oleic acid/linoleic acid ratio

PC:

principal component

PUFA:

poly-unsaturated fatty acids

SFA:

saturated fatty acids

UI:

unsaturation index of fatty acids

References

  • Ayorinde F.O., Ologund M.O., Nana E.Y., Bernard B.N., Apolabi O.A., Oki O.L. & Shepard R.L. 1989. Determination of fatty acid composition of amaranthus species. J. Am. Oil Chem. Soc. 66: 1812–1816.

    Article  CAS  Google Scholar 

  • Badea C. & Basu S.K. 2009. The effect of low temperature on metabolism of membrane lipids in plants and associated gene expression. Plant Omics 2: 78–84.

    CAS  Google Scholar 

  • Berganza B.E., Moran A.W., Rodríguez G.M., Coto N.M., Santamaría M. & Bressani R. 2003. Effect of variety and location on the total fat, fatty acids and squalene content of amaranth. Plant Food Human Nutr. 58: 1–6.

    Article  Google Scholar 

  • Bressani R. 1994. Composition and nutritional properties of amaranth, pp. 185–205. In: Paredes-López O. (ed.), Amaranth: Biology, Chemistry and Technology. CRC Press, Boca Raton.

    Google Scholar 

  • Browse J., Warwick N., Somerville C.R. & Slack C.R. 1986. Fluxes through the prokaryotic and the eukaryotic pathways of lipid synthesis in the 16:3 plant Arabidopsis thaliana. Biochem. J. 235: 25–31.

    CAS  PubMed  Google Scholar 

  • Budin J.T., Breen W.M. & Patnum D.H. 1996. Some compositional properties of seeds and oils of eight Amaranthus species. J. Am. Oil Chem. Soc. 73: 475–481.

    Article  CAS  Google Scholar 

  • Christoperson S.W. & Glass R.L 1969. Preparation of milk fat methyl esters by alcoholysis in an essentially nonalcoholic solution. J. Dairy Sci. 52: 1289–1290.

    Article  Google Scholar 

  • Čertík M. & Šajbidor J. 1996. Variability of fatty acid composition in strains Mucor and Rhizopus and its dependence on the submersed and surface growth. Microbios 85: 151–160.

    Google Scholar 

  • De Macvean A.L. & Pöll E. 1997. Ethnobotany (chapter 8). In: Vozzo J.A. (ed.) Tropical Tree Seed Manual. USDA Forest Service.

    Google Scholar 

  • Ferrucci L., Cherubini A., Bandinelli S., Bartali B. & Corsi A. 2006. Relationship of plasma polyunsaturated fatty acids to circulating inflammatory markers. J. Clin. Endocr. Metab. 91: 439–446.

    Article  CAS  PubMed  Google Scholar 

  • Gebhardt S.E., Pehrsson P.R., Cutrufelli R.L., Lemar L.E., Howe J.C., Haytowitz D.B., Nickle M.S., Holcomb G.T., Showell B.A., Thomas R.G., Exler J. & Holden J.M. 2007. USDA National Nutrient Database for Standard Reference (release 20). http://www.ars.udsda.gov/nutrientdata/ (accessed on 5.3.2013).

    Google Scholar 

  • Gimplinger D.M., Dobos G., Schönlechner R. & Kaul H.P. 2007. Yield and quality of grain amaranth (Amaranthus sp.) in Eastern Austria. Plant Soil Environ. 53: 105–112.

    Google Scholar 

  • Gonor K.V., Pogozheva A.V., Kulakova S.N., Medvedev F.A. & Miroshnichenko L.A. 2006. The influence of diet with including amaranth oil on oil metabolism in patients with ischemic heart disease and hyperlipoproteidemia. Vopr. Pitan. 75: 17–21.

    CAS  PubMed  Google Scholar 

  • Gunstone F.D. 2005. Vegetable oils, pp. 213–267. In: Shahidi F. (ed.) Bailey’s Industrial Oil and Fat Products, 6th Ed., 6-volume set. John Wiley & Sons.

    Google Scholar 

  • He H. & Corke H. 2003. Oil and squalene in amaranthus grain and leaf. J. Agric. Food Chem. 51: 7913–7920.

    Article  CAS  PubMed  Google Scholar 

  • He H., Yizhoung C., Mei S. & Corke H. 2002. Extraction and purification of squalene from Amaranthus grain. J. Agric. Food Chem. 50: 368–372.

    Article  CAS  PubMed  Google Scholar 

  • Jahaniaval F., Kakuda Y. & Marcone M.F. 2000. Fatty acids and triacylglycerol composition of seed oil of five Amaranthus accessions and their comparison to other oils. J. Am. Oil Chem. Soc. 77: 47–852.

    Article  Google Scholar 

  • Ješko D. & Čertík M. 2008. Genotype variability of fatty acids in cereal grains. Chem. Listy 102: 675–677.

    Google Scholar 

  • Kigel J. 1994. Development and ecophysiology of amaranths, pp 39–75. In: Peredes-López O. (ed.) Amaranth: Biology, Chemistry and Technology. CRC Press, An Arbor.

    Google Scholar 

  • Kris-Etherton P.M., Pearson T.A., Wan Y., Hargrove R.L., Moriarty K., Fishell V. & Etherton T.D. 1999. Highmonounsaturated fatty acid diets lower both plasma cholesterol and triacylglycerol concentrations. Am. J. Clin. Nutr. 70: 1009–1015.

    CAS  PubMed  Google Scholar 

  • Kulakow P.A. & Hauptli H. 1994. Genetic characterization of amaranth grain, pp. 9–22. In: Paredes-López O. (ed.) Amaranth Biology, Chemistry and Technology. CRC Press, London.

    Google Scholar 

  • Lehmann J.W. 1996. Case history of grain Amaranthus and alternative crop. Cereal Food World 41: 399–411.

    Google Scholar 

  • Mensink R.P., Zock P.L., Kester A.D. & Katan M.B. 2003. Effects of dietary fatty acids and carbohydrates on the ratio of serum total to HDL cholesterol and on serum lipids and apolipoproteins: a meta-analysis of 60 controlled trials. Am. J. Clin. Nutr. 77: 1146–1155.

    CAS  PubMed  Google Scholar 

  • Muchová Z., Čuková L. & Mucha R. 2000. Seed protein fractions of amaranth (Amaranthus sp.). Rost. Vyroba 46: 331–336.

    Google Scholar 

  • Neidleman S.I. 1987. Effects of temperature on lipid unsaturation. Biotechnol. Genet. Eng. 5: 245–268.

    Article  CAS  Google Scholar 

  • Pasko P., Barton H., Zagrodzki P., Gorinstein S., Fołta M. & Zachwieja Z. 2009. Anthocyanins, total polyphenols and antioxidant activity in amaranth and quinoa seeds and sprouts during their growth. Food Chem. 115: 994–998.

    Article  CAS  Google Scholar 

  • Prakash D., Joshi B.D. & Pal M. 1995. Vitamin C in leaves and seed oil composition of the Amaranthus species. Int. J. Food Sci. Nutr. 46: 47–51.

    Article  CAS  PubMed  Google Scholar 

  • Prakash D. & Pal M. 1992. Seed protein, fat and fatty acid profile of amaranthus species. J. Sci. Food Agric. 58: 145–147.

    Article  CAS  Google Scholar 

  • Rodas B. & Bressani R. 2009. The oil, fatty acids and squalene content of genotypes of raw and processed amaranth grain. Arch. Latinoam. Nutr. 59: 82–87.

    CAS  PubMed  Google Scholar 

  • Roughan P.G., Holland R. & Slack C.R. 1980. The role of chloroplasts and microsomal fractions in polar lipid synthesis from [1-14C] acetate by cell-free preparations from spinach (Spinacia oleracea) leaves. Biochem. J. 188: 17–24.

    CAS  PubMed  Google Scholar 

  • Ruales J. & Nair B.M. 1993. Contents of fat, vitamins and minerals in quinoa (Chenopodium quinoa willd.) seed. Food Chem. 48: 131–137.

    Article  CAS  Google Scholar 

  • Sauerbeck G., Stolzenburg K., Schweiger P., Schroeter C., Wilhelm E. & Matthäus B. 2002. Anbau von Amaranth und Quinoa in Norddeutschland: Kornqualität am Beispiel von Fettuntersuchungen. Getreide, Mehl Brot 56: 330–333.

    CAS  Google Scholar 

  • Shanklin J. & Somerville C. 1991. Stearoyl-acyl-carrier-protein desaturase from higher plants is structurally unrelated to the animal and fungal homologs. Proc. Natl. Acad. Sci. USA 88: 2510–2514.

    Article  CAS  PubMed  Google Scholar 

  • Simopoulos A.P. 2008. The importance of the omega-6/omega-3 fatty acid ratio in cardiovascular disease and other chronic diseases. Exp. Biol. Med. 233: 674–688.

    Article  CAS  Google Scholar 

  • Singhal R. & Kulkarni P.R. 1988. Composition of the seeds of some Amaranthus species. J. Sci. Food Agric. 42: 325–331.

    Article  CAS  Google Scholar 

  • Skwaryło-Bednarz B. 2012. Assessment of content of fat and tocopherols in seeds of Amaranthus in relation to diversified fertilisation with macroelements. Ecol. Chem. Eng. 19: 273–279.

    Google Scholar 

  • Summers L.K., Fielding B.A., Bradshaw H.A., Ilic V. & Beysen C. 2002. Substituting dietary saturated fat with polyunsaturated fat changes abdominal fat distribution and improves insulin sensitivity. Diabetologia 45: 369–377.

    Article  CAS  PubMed  Google Scholar 

  • Thelen J.J. & Ohlrogge J.B. 2002. Metabolic engineering of fatty acids biosynthesis in plants. Metab. Eng. 11: 12–21.

    Article  Google Scholar 

  • Williams J.T. & Brenner D. 1995. Grain amaranth (Amaranthus species), pp. 129–186. In: Williams J.T. (ed.) Cereals and Pseudocereals. Chapman & Hall, London.

    Google Scholar 

  • Wood S.G., Lawsonm L.D., Fairbanks D.J., Robinson L.R. & Anderson W.R. 1993. Seed lipid content and fatty acid composition of three quinoa cultivars. J. Food Comp. Anal. 6: 41–44.

    Article  CAS  Google Scholar 

  • Yanez E., Zacarias I., Ganger D., Vasquez M. & Estevez A.M. 1994. Chemical and nutritional characterisation of amaranth (Amaranthus cruentus). Arch. Latinoam. Nutr. 44: 57–62.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Hlinková.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hlinková, A., Bednárová, A., Havrlentová, M. et al. Evaluation of fatty acid composition among selected amaranth grains grown in two consecutive years. Biologia 68, 641–650 (2013). https://doi.org/10.2478/s11756-013-0190-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11756-013-0190-6

Key words

Navigation