Skip to main content
Log in

Need for database extension for reliable identification of bacteria from extreme environments using MALDI TOF mass spectrometry

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

The ability of MALDI TOF MS (matrix-assisted laser desorption ionisation time-of-flight mass spectrometry) to identify cultivable microflora from two waste disposal sites from non-ferrous metal industry was analysed. Despite the harsh conditions (extreme pH values and heavy metal content in red mud disposal site from aluminium production or high heavy metal content in nickel sludge), relatively high numbers of bacteria were recovered. In both environments, the bacterial community was dominated by Gram-positive bacteria, especially by actinobacteria. High-quality MALDI TOF mass spectra were obtained but most of the bacteria isolates could be not identified using MALDI Biotyper software. The overall identification rate was lower than 20 %; in two of the environments tested identification rates were lower than 10 %. As a dominant bacterial species, Microbacterium spp. in drainage water from an aluminium red mud disposal site near Žiar nad Hronom, Bacillus spp. in red mud samples from the same site, and Arthrobacter spp. from nickel smelter sludge near Sereï were identified by a combination of the Biolog system and 16S rRNA sequence analysis. As the primary focus of the MALDI TOF MS-based methodology is directed towards medically important bacteria, reference database spectra expansion and refinement are needed to improve the ability of MALDI TOF MS to identify environmental bacteria, especially those from extreme environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Anhalt, J. P., & Fenselau, C. (1975). Identification of bacteria using mass spectrometry. Analytical Chemistry, 47, 219–225. DOI: 10.1021/ac60352a007.

    Article  CAS  Google Scholar 

  • Bizzini, A., Jaton, K., Romo, D., Bille, J., Prod’hom, G., & Greub, G. (2011). Matrix-assisted laser desorption ionization-time of flight mass spectrometry as an alternative to 16S rRNA gene sequencing for identification of difficult-toidentify bacterial strains. Journal of Clinical Microbiology, 49, 693–696. DOI: 10.1128/jcm.01463-10.

    Article  CAS  Google Scholar 

  • Borsodi, A. K., Micsinai, A., Rusznyák, A., Vladár, P., Kovács, G., Tóth, E. M., & Márialigeti, K. (2005). Diversity of alkaliphilic and alkalitolerant bacteria cultivated from decomposing reed rhizomes in a Hungarian soda lake. Microbial Ecology, 50, 9-18. DOI: 10.1007/s00248-004-0063-1.

    Google Scholar 

  • Christensen, J. J., Dargis, R., Hammer, M., Justesen, U. S., Nielsen, X. C., Kemp, M., & the Danish MALDI-TOF MS Study Group (2012). Matrix-assisted laser desorption ionization-time of flight mass spectrometry analysis of Grampositive, catalase-negative cocci not belonging to the Streptococcus or Enterococcus genus and benefits of database extension. Journal of Clinical Microbiology, 50, 1787–1791. DOI: 10.1128/jcm.06339-11.

    Article  CAS  Google Scholar 

  • Clarridge, J. E., III (2004). Impact of 16S rRNA gene sequence analysis for identification of bacteria on clinical microbiology and infectious diseases. Clinical Microbiology Reviews, 17, 840–862. DOI: 10.1128/cmr.17.4.840-862.2004.

    Article  CAS  Google Scholar 

  • Cobo, F. (2013). Application of MALDI-TOF mass spectrometry in clinical virology: A review. The Open Virology Journal, 7, 84–90. DOI: 10.2174/1874357920130927003.

    Article  Google Scholar 

  • De Bruyne, K., Slabbinck, B., Waegeman, W., Vauterin, P., De Baets, B., & Vandamme, P. (2011). Bacterial species identification from MALDI-TOF mass spectra through data analysis and machine learning. Systematic and Applied Microbiology, 34, 20–29. DOI: 10.1016/j.syapm.2010.11.003.

    Article  Google Scholar 

  • Edouard, S., Couderc, C., Raoult, D., & Fournier, P. E. (2012). Mass spectrometric identification of Propionibacterium isolates requires database enrichment. Advances in Microbiology, 2, 497–504. DOI: 10.4236/aim.2012.24063.

    Article  CAS  Google Scholar 

  • Eigner, U., Holfelder, M., Oberdorfer, K., Betz-Wild, U., Bertsch, D., & Fahr, A. M. (2009). Performance of a matrix-assisted laser desorption ionization-time-of-flight mass spectrometry system for the identification of bacterial isolates in the clinical routine laboratory. Clinical Laboratory, 55, 289–296.

    CAS  Google Scholar 

  • Ellis, R. J., Morgan, P., Weightman, A. J., & Fry, J. C. (2003). Cultivation-dependent and -independent approaches for determining bacterial diversity in heavy-metal-contaminated soil. Applied and Environmental Microbiology, 69, 3223–3230. DOI: 10.1128/aem.69.6.3223-3230.2003.

    Article  CAS  Google Scholar 

  • Ferreira, L., Sánchez-Juanes, F., Muñoz-Bellido, J. L., & González-Buitrago, J. M. (2011). Rapid method for direct identification of bacteria in urine and blood culture samples by matrix-assisted laser desorption ionization time-offlight mass spectrometry: intact cell vs. extraction method. Clinical Microbiology and Infection, 17, 1007–1012. DOI: 10.1111/j.1469-0691.2010.03339.x.

    Article  CAS  Google Scholar 

  • Hamdy, M. K., & Williams, F. S. (2001). Bacterial amelioration of bauxite residue waste of industrial alumina plants. Journal of Industrial Microbiology and Biotechnology, 27, 228–233. DOI: 10.1038/sj.jim.7000181.

    Article  CAS  Google Scholar 

  • Holland, R. D., Wilkes, J. G., Rafii, F., Sutherland, J. B., Persons, C. C., Voorhees, K. J., & Lay, J. O., Jr. (1996). Rapid identification of intact whole bacteria based on spectral patterns using matrix-assisted laser desorption/ionization with time-of-flight mass spectrometry. Rapid Communications in Mass Spectrometry, 10, 1227–1232. DOI: 10.1002/(SICI)1097-0231(19960731)10:10<1227::AIDRCM659>3.0.CO;2-6.

    Article  CAS  Google Scholar 

  • Kaprelyants, A. S., & Kell, D. B. (1993). Dormancy in stationary-phase cultures of Micrococcus luteus: Flow cytometric analysis of starvation and resuscitation. Applied and Environmental Microbiology, 59, 3187–3196.

    CAS  Google Scholar 

  • Keys, C. J., Dare, D. J., Sutton, H., Wells, G., Lunt, M., McKenna, T., McDowall, M., & Shah, H. N. (2004). Compilation of a MALDI-TOF mass spectral database for the rapid screening and characterisation of bacteria implicated in human infectious diseases. Infection, Genetics and Evolution, 4, 221–242. DOI: 10.1016/j.meegid.2004.02.004.

    Article  CAS  Google Scholar 

  • Kim, O. S., Cho, Y. J., Lee, K., Yoon, S. H., Kim, M., Na, H., Park, S. C., Jeon, Y. S., Lee, J. H., Yi, H., Won, S., & Chun, J. (2012). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. International Journal of Systematic and Evolutionary Microbiology, 62, 716–721. DOI: 10.1099/ijs.0.038075-0.

    Article  CAS  Google Scholar 

  • Koubek, J., Uhlik, O., Jecna, K., Junkova, P., Vrkoslavova, J., Lipov, J., Kurzawova, V., Macek, T., & Mackova, M. (2012). Whole-cell MALDI-TOF: Rapid screening method in environmental microbiology. International Biodeterioration & Biodegradation, 69, 82–86. DOI: 10.1016/j.ibiod.2011.12.007.

    Article  CAS  Google Scholar 

  • Krader, P., & Emerson, D. (2004). Identification of archaea and some extremophilic bacteria using matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry. Extremophiles, 8, 259–268. DOI: 10.1007/s00792-004-0382-7.

    Article  CAS  Google Scholar 

  • Logan, N. A. (2012). Bacillus and relatives in foodborne illness. Journal of Applied Microbiology, 112, 417–429. DOI: 10.1111/j.1365-2672.2011.05204.x.

    Article  CAS  Google Scholar 

  • Margesin, R., Płaza, G. A., & Kasenbacher, S. (2011). Characterization of bacterial communities at heavy-metal-contaminated sites. Chemosphere, 82, 1583–1588. DOI: 10.1016/j.chemosphere.2010.11.056.

    Article  CAS  Google Scholar 

  • Martiny, D., Busson, L., Wybo, I., Ait El Haj, R., Dediste, A., & Vandenberg, O. (2012). Comparison of the Microflex LT and Vitek MS systems for routine identification of bacteria by matrix-assisted laser desorption ionization-time of flight mass spectrometry. Journal of Clinical Microbiology, 50, 1313–1325. DOI: 10.1128/jcm.05971-11.

    Article  Google Scholar 

  • Mengoni, A., Barzanti, R., Gonnelli, C., Gabbrielli, R., & Bazzicalupo, M. (2001). Characterization of nickel-resistant bacteria isolated from serpentine soil. Environmental Microbiology, 3, 691–698. DOI: 10.1046/j.1462-2920.2001.00243.x.

    Article  CAS  Google Scholar 

  • Michaeli, E., Boltižiar, M., Solár, V., & Ivanová, M. (2012). The landfill of industrial waste - lúženec near the former Nickel Smelter at Sered’ Town as an example of environmental load. Životné prostredie, 46, 63–68. (in Slovak)

    Google Scholar 

  • Sauer, S., Freiwald, A., Maier, T., Kube, M., Reinhardt, R., Kostrzewa, M., & Geider, K. (2008). Classification and identification of bacteria by mass spectrometry and computational analysis. PLoS ONE, 3, e2843. DOI: 10.1371/journal.pone.0002843.

    Article  Google Scholar 

  • Su, J., Wu, Y., Ma, X., Zhang, G., Feng, H., & Zhang, Y. (2004). Soil microbial counts and identification of culturable bacteria in an extreme by arid zone. Folia Microbiologica, 49, 423–429. DOI: 10.1007/bf02931604.

    Article  CAS  Google Scholar 

  • Van Belkum, A., Welker, M., Erhard, M., & Chatellier, S. (2012). Biomedical mass spectrometry in today’s and tomorrow’s clinical microbiology laboratories. Journal of Clinical Microbiology, 50, 1513–1517. DOI: 10.1128/jcm.00420-12.

    Article  Google Scholar 

  • Vargha, M., Takáts, Z., Konopka, A., & Nakatsu, C. H. (2006). Optimization of MALDI-TOF MS for strain level differentiation of Arthrobacter isolates. Journal of Microbiological Methods, 66, 399–409. DOI: 10.1016/j.mimet.2006.01.006.

    Article  CAS  Google Scholar 

  • Van Veen, S. Q., Claas, E. C. J., & Kuijper, E. J. (2010). High-throughput identification of bacteria and yeast by matrix-assisted laser desorption ionization-time of flight mass spectrometry in conventional medical microbiology laboratories. Journal of Clinical Microbiology, 48, 900–907. DOI: 10.1128/jcm.02071-09.

    Article  Google Scholar 

  • Wang, Y. P., Shi, J. Y., Wang, H., Lin, Q., Chen, X. C., & Chen, Y. X. (2007). The influence of soil heavy metals pollution on soil microbial biomass, enzyme activity, and community composition near a copper smelter. Ecotoxicology and Environmental Safety, 67, 75–81. DOI: 10.1016/j.ecoenv.2006.03.007.

    Article  CAS  Google Scholar 

  • Weisburg, W. G., Barns, S. M., Pelletier, D. A., & Lane, D. J. (1991). 16S ribosomal DNA amplification for phylogenetic study. Journal of Bacteriology, 173, 697–703.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Pristas.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kopcakova, A., Stramova, Z., Kvasnova, S. et al. Need for database extension for reliable identification of bacteria from extreme environments using MALDI TOF mass spectrometry. Chem. Pap. 68, 1435–1442 (2014). https://doi.org/10.2478/s11696-014-0612-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11696-014-0612-0

Keywords

Navigation