Skip to main content
Log in

Use of green fluorescent proteins for in vitro biosensing

  • Review
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

Due to the considerable stability of green fluorescent proteins and their capacity to be readily permutated or mutated, they may be exploited in multiple ways to enhance the functionality of in vitro biosensors. Many possibilities, such as the formation of chimeras with other proteins or antibodies, as well as Förster resonance emission transfer performance, may be used for the highly sensitive and specific detection of the target molecules. This review considers the great potential of green fluorescent proteins as the fluorescent probing or recognition biomolecule in various in vitro biosensors applications, as well as obstacles associated with their use.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abedi, M. R., Caponigro, G., & Kamb, A. (1998) Green fluorescent protein as a scaffold for intracellular presentation of peptides. Nucleic Acids Research, 26, 623–630. DOI: 10.1093/nar/26.2.623.

    Article  CAS  Google Scholar 

  • Ai, H.W., Olenych, S. G., Wong, P., Davidson, M. W., & Campbell, R. E. (2008) Hue-shifted monomeric variants of Clavularia cyan fluorescent protein: Identification of the molecular determinants of color and applications in fluorescence imaging. BMC Biology, 6, 13. DOI: 10.1186/1741-7007-6-13.

    Article  Google Scholar 

  • Arosio, D., Ricci, F., Marchetti, L., Gualdani, R., Albertazzi, L., & Beltram, F. (2010) Simultaneous intracellular chloride and pH measurements using a GFP-based sensor. Nature Methods, 7, 516–518. DOI: 10.1038/nmeth.1471.

    Article  CAS  Google Scholar 

  • Baird, G. S., Zacharias, D. A., & Tsien, R. Y. (1999) Circular permutation and receptor insertion within green fluorescent proteins. Proceedings of the National Academy of Sciences of the United States of America, 96, 11241–11246. DOI: 10.1073/pnas.96.20.11241.

    Article  CAS  Google Scholar 

  • Campbell, R.E., Tour, O., Palmer, A.E., Steinbach, P.A., Baird, G. S., Zacharias, D. A., & Tsien, R. Y. (2002) A monomeric red fluorescent protein. Proceedings of the National Academy of Sciences of the United States of America, 99, 7877–7882. DOI: 10.1073/pnas.082243699.

    Article  CAS  Google Scholar 

  • Campbell, R. E. (2009) Fluorescent-protein-based biosensors: Modulation of energy transfer as a design principle. Analytical Chemistry, 81, 5972–5979. DOI: 10.1021/ac802613w.

    Article  CAS  Google Scholar 

  • Chen, G. W., Song, F. L., Xiong, X. Q., & Peng, X. J. (2013) Fluorescent nanosensors based on fluorescence resonance energy transfer (FRET). Industrial & Engineering Chemistry Research, 52, 11228–11245. DOI: 10.1021/ie303485n.

    Article  CAS  Google Scholar 

  • Coumans, J. V. F., Gau, D., Poljak, A., Wasinger, V., Roy, P., & Moens, P. (2014) Green fluorescent protein expression triggers proteome changes in breast cancer cells. Experimental Cell Research, 320, 33–45. DOI: 10.1016/j.yexcr.2013.07.019.

    Article  CAS  Google Scholar 

  • Cubitt, A.B., Heim, R., Adams, S.R., Boyd, A.E., Gross, L.A., & Tsien, R. Y. (1995) Understanding, improving and using green fluorescent proteins. Trends in Biochemical Sciences, 20, 448–455. DOI: 10.1016/s0968-0004(00)89099-4.

    Article  CAS  Google Scholar 

  • Day, R. N., & Davidson, M. W. (2009) The fluorescent protein palette: Tools for cellular imaging. Chemical Society Reviews, 38, 2887–2921. DOI: 10.1039/b901966a.

    Article  CAS  Google Scholar 

  • Dennis, A. M., & Bao, G. (2008) Quantum dot-fluorescent protein pairs as novel fluorescence resonance energy transfer probes. Nano Letters, 8, 1439–1445. DOI: 10.1021/nl080358+.

    Article  CAS  Google Scholar 

  • Dennis, A. M., Sotto, D. C., Mei, B. C., Medintz, I. L., Mattoussi, H., & Bao, G. (2010) Surface ligand effects on metal-affinity coordination to quantum dots: Implications for nanoprobe self-assembly. Bioconjugate Chemistry, 21, 1160–1170. DOI: 10.1021/bc900500m.

    Article  CAS  Google Scholar 

  • Dikici, E., Deo, S. K., & Daunert, S. (2003) Drug detection based on the conformational changes of calmodulin and the fluorescence of its enhanced green fluorescent protein fusion partner. Analytica Chimica Acta, 500, 237–245. DOI: 10.1016/j.aca.2003.08.027.

    Article  CAS  Google Scholar 

  • Doi, N., & Yanagawa, H. (1999) Design of generic biosensors based on green fluorescent proteins with allosteric sites by directed evolution. FEBS Letters, 453, 305–307. DOI: 10.1016/s0014-5793(99)00732-2.

    Article  CAS  Google Scholar 

  • García-Alonso, J., Greenway, G. M., Hardege, J. D., & Haswell, S. J. (2009) A prototype microfluidic chip using fluorescent yeast for detection of toxic compounds. Biosensors & Bioelectronics, 24, 1508–1511. DOI: 10.1016/j.bios.2008.07.074.

    Article  Google Scholar 

  • Griesbeck, O., Baird, G. S., Campbell, R. E., Zacharias, D. A., & Tsien, R. Y. (2001) Reducing the environmental sensitivity of yellow fluorescent protein: Mechanism and applications. Journal of Biological Chemistry, 276, 29188–29194. DOI: 10.1074/jbc.m102815200.

    Article  CAS  Google Scholar 

  • Hudson, P. J., & Souriau, C. (2003) Engineered antibodies. Nature Medicine, 9, 129–134. DOI: 10.1038/nm0103-129.

    Article  CAS  Google Scholar 

  • Ip, D. T. M., Wong, K. B., & Wan, D. C. C. (2007) Characterization of novel orange fluorescent protein cloned from cnidarian tube anemone Cerianthus sp. Marine Biotechnology, 9, 469–478. DOI: 10.1007/s10126-007-9005-5.

    Article  CAS  Google Scholar 

  • Kogure, T., Karasawa, S., Araki, T., Saito, K., Kinjo, M., & Miyawaki, A. (2006) A fluorescent variant of a protein from the stony coral Montipora facilitates dual-color single-laser fluorescence cross-correlation spectroscopy Nature Biotechnology, 24, 577–581. DOI: 10.1038/nbt1207.

    Article  CAS  Google Scholar 

  • Kremers, G. J., Goedhart, J., van den Heuvel, D. J., Gerritsen, H. C., & Gadella, T. W. J. (2007) Improved green and blue fluorescent proteins for expression in bacteria and mammalian cells. Biochemistry, 46, 3775–3783. DOI: 10.1021/bi0622874.

    Article  CAS  Google Scholar 

  • Kuang, Y., Biran, I., & Walt, D. R. (2004) Living bacterial cell array for genotoxin monitoring. Analytical Chemistry, 76, 2902–2909. DOI: 10.1021/ac0354589.

    Article  CAS  Google Scholar 

  • Lim, D.V., Simpson, J.M., Kearns, E.A., & Kramer, M.F. (2005) Current and developing technologies for monitoring agents of bioterrorism and biowarfare. Clinical Microbiology Reviews, 18, 583–607. DOI: 10.1128/cmr.18.4.583-607.2005.

    Article  CAS  Google Scholar 

  • Mazzola, P. G., Ishii, M., Chau, E., Cholewa, O., & Penna, T. C. V. (2006) Stability of green fluorescent protein (GFP). in chlorine solutions of varying pH. Biotechnology Progress, 22, 1702–1707. DOI: 10.1021/bp060217i.

    Article  CAS  Google Scholar 

  • McFadden, P. (2002) Broadband biodetection: Holmes on a chip. Science, 297, 2075–2076. DOI: 10.1126/science.297.5589.2075.

    Article  CAS  Google Scholar 

  • Medintz, I. L., Clapp, A. R., Mattoussi, H., Goldman, E. R., Fisher, B., & Mauro, J. M. (2003) Self-assembled nanoscale biosensors based on quantum dot FRET donors. Nature Materials, 2, 630–638. DOI: 10.1038/nmat961.

    Article  CAS  Google Scholar 

  • Merzlyak, E. M., Goedhart, J., Shcherbo, D., Bulina, M. E., Shcheglov, A. S., Fradkov, A. F., Gaintzeva, A., Lukyanov, K.A., Lukyanov, S., Gadella, T.W.J., & Chudakov, D. M. (2007) Bright monomeric red fluorescent protein with an extended fluorescence lifetime. Nature Methods, 4, 555–557. DOI: 10.1038/nmeth1062.

    Article  CAS  Google Scholar 

  • Nguyen, A. W., & Daugherty, P. S. (2005) Evolutionary optimization of fluorescent proteins for intracellular FRET. Nature Biotechnology, 23, 355–360. DOI: 10.1038/nbt1066.

    Article  CAS  Google Scholar 

  • Ormö, M., Cubitt, A. B., Kallio, K., Gross, L. A., Tsien, R. Y., & Remington, S. J. (1996) Crystal structure ofthe Aequorea victoria green fluorescent protein. Science, 273, 1392–1395. DOI: 10.1126/science.273.5280.1392.

    Article  Google Scholar 

  • Patterson, G. H., Piston, D. W., & Barisas, B. G. (2000) Förster distances between green fluorescent protein pairs. Analytical Biochemistry, 284, 438–440. DOI: 10.1006/abio.2000.4708.

    Article  CAS  Google Scholar 

  • Pavoor, T. V., Cho, Y. K., & Shusta, E. V. (2009) Development of GFP-based biosensors possessing the binding properties of antibodies. Proceedings of the National Academy of Sciences of the United States of America, 106, 11895–11900. DOI: 10.1073/pnas.0902828106.

    Article  Google Scholar 

  • Pédelacq, J. D., Cabantous, S., Tran, T., Terwilliger, T. C., & Waldo, G. S. (2006) Engineering and characterization of a superfolder green fluorescent protein. Nature Biotechnology, 24, 79–88. DOI: 10.1038/nbt1172.

    Article  Google Scholar 

  • Piston, D. W., & Kremers, G. J. (2007) Fluorescent protein FRET: The good, the bad and the ugly. Trends in Biochemical Sciences, 32, 407–414. DOI: 10.1016/j.tibs.2007.08.003.

    Article  CAS  Google Scholar 

  • Pouwels, L. J., Zhang, L.P., Chan, N.H., Dorrestein, P. C., & Wachter, R. M. (2008) Kinetic isotope effect studies on the de novo rate of chromophore formation in fastand slow-maturing GFP variants. Biochemistry, 47, 10111–10122. DOI: 10.1021/bi8007164.

    Article  CAS  Google Scholar 

  • Puckett, L. G., Dikici, E., Lai, S., Madou, M., Bachas, L. G., & Daunert, S. (2004) Investigation into the applicability of the centrifugal microfluidics platform for the development of protein-ligand binding assays incorporating enhanced green fluorescent protein as a fluorescent reporter. Analytical Chemistry, 76, 7263–7268. DOI: 10.1021/ac049758h.

    Article  CAS  Google Scholar 

  • Qu, L. H., & Peng, X. G. (2002) Control of photoluminescence properties of CdSe nanocrystals in growth. Journal of the American Chemical Society, 124, 2049–2055. DOI: 10.1021/ja017002j.

    Article  CAS  Google Scholar 

  • Richmond, T. A., Takahashi, T. T., Shimkhada, R., & Bernsdorf, J. (2000) Engineered metal binding sites on green fluorescence protein. Biochemical and Biophysical Research Communications, 268, 462–465. DOI: 10.1006/bbrc.1999.1244.

    Article  CAS  Google Scholar 

  • Rizzo, M. A., Springer, G. H., Granada, B., & Piston, D. W. (2004) An improved cyan fluorescent protein variant useful for FRET. Nature Biotechnology, 22, 445–449. DOI: 10.1038/nbt945.

    Article  CAS  Google Scholar 

  • Sapsford, K. E., Berti, L., & Medintz, I. L. (2006a) Materials for fluorescence resonance energy transfer analysis: Beyond traditional donor-acceptor combinations. Angewandte Chemie International Edition, 45, 4562–4589. DOI: 10.1002/anie.200503873.

    Article  CAS  Google Scholar 

  • Sapsford, K. E., Pons, T., Medintz, I. L., & Mattoussi, H. (2006b) Biosensing with luminescent semiconductor quantum dots. Sensors, 6, 925–953. DOI: 10.3390/s6080925.

    Article  CAS  Google Scholar 

  • Shagin, D. A., Barsova, E. V., Yanushevich, Y. G., Fradkov, A. F., Lukyanov, K. A., Labas, Y.A., Semenova, T.N., Ugalde, J. A., Meyers, A., Nunez, J. M., Widder, E. A., Lukyanov, S. A., & Matz, M. V. (2004) GFP-like proteins as ubiquitous metazoan superfamily: Evolution of functional features and structural complexity. Molecular Biology and Evolution, 21, 841–850. DOI: 10.1093/molbev/msh079.

    Article  CAS  Google Scholar 

  • Shaner, N. C., Campbell, R. E., Steinbach, P. A., Giepmans, B. N. G., Palmer, A. E., & Tsien, R. Y. (2004) Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein. Nature Biotechnology, 22, 1567–1572. DOI: 10.1038/nbt1037.

    Article  CAS  Google Scholar 

  • Shaner, N. C., Patterson, G. H., & Davidson, M. W. (2007) Advances in fluorescent protein technology. Journal of Cell Science, 120, 4247–4260. DOI: 10.1242/jcs.005801.

    Article  CAS  Google Scholar 

  • Shaner, N.C., Lin, M. Z., McKeown, M.R., Steinbach, P. A., Hazelwood, K. L., Davidson, M. W., & Tsien, R. Y. (2008) Improving the photostability of bright monomeric orange and red fluorescent proteins. Nature Methods, 5, 545–551. DOI: 10.1038/nmeth.1209.

    Article  CAS  Google Scholar 

  • Shanmugaratnam, S., Eisenbeis, S., & Hocker, B. (2012) A highly stable protein chimera built from fragments of different folds. Protein Engineering Design and Selection, 25, 699–703. DOI: 10.1093/protein/gzs074.

    Article  CAS  Google Scholar 

  • Shcherbo, D., Shemiakina, I. I., Ryabova, A. V., Luker, K. E., Schmidt, B. T., Souslova, E. A., Gorodnicheva, T. V., Strukova, L., Shidlovskiy, K. M., Britanova, O. V., Zaraisky, A.G., Lukyanov, K.A., Loschenov, V.B., Luker, G.D., & Chudakov, D. M. (2010) Near-infrared fluorescent proteins. Nature Methods, 7, 827–829. DOI: 10.1038/nmeth.1501.

    Article  CAS  Google Scholar 

  • Subach, O. M., Gundorov, I. S., Yoshimura, M., Subach, F. V., Zhang, J. H., Grüenwald, D., Souslova, E. A., Chudakov, D. M., & Verkhusha, V. V. (2008) Conversion of red fluorescent protein into a bright blue probe. Chemistry & Biology, 15, 1116–1124. DOI: 10.1016/j.chembiol.2008.08.006.

    Article  CAS  Google Scholar 

  • Sun, P., Liu, Y., Sha, J., Zhang, Z.Y., Tu, Q., Chen, P., & Wang, J. Y. (2011) High-throughput microfluidic system for long-term bacterial colony monitoring and antibiotic testing in zero-flow environments. Biosensors & Bioelectronics, 26, 1993–1999. DOI: 10.1016/j.bios.2010.08.062.

    Article  CAS  Google Scholar 

  • Tansila, N., Tantimongcolwat, T., Isarankura-Na-Ayudhya, C., Nantasenamat, C., & Prachayasittikul, V. (2007) Rational design of analyte channels of the green fluorescent protein for biosensor applications. International Journal of Biological Sciences, 3, 463–470.

    Article  CAS  Google Scholar 

  • Tomosugi, W., Matsuda, T., Tani, T., Nemoto, T., Kotera, I., Saito, K., Horikawa, K., & Nagai, T. (2009) An ultramarine fluorescent protein with increased photostability and pH insensitivity. Nature Methods, 6, 351–353. DOI: 10.1038/nmeth.1317.

    Article  CAS  Google Scholar 

  • Tsutsui, H., Karasawa, S., Okamura, Y., & Miyawaki, A. (2008) Improving membrane voltage measurements using FRET with new fluorescent proteins. Nature Methods, 5, 683–685. DOI: 10.1038/nmeth.1235.

    Article  CAS  Google Scholar 

  • Wachter, R. M. (2007) Chromogenic cross-link formation in green fluorescent protein. Accounts of Chemical Research, 40, 120–127. DOI: 10.1021/ar040086r.

    Article  CAS  Google Scholar 

  • Wang, L., & Tsien, R. Y. (2006) Evolving proteins in mammalian cells using somatic hypermutation. Nature Protocols, 1, 1346–1350. DOI: 10.1038/nprot.2006.243.

    Article  CAS  Google Scholar 

  • Yang, F., Moss, L. G., & Phillips, G. N. (1996) The molecular structure of green fluorescent protein. Nature Biotechnology, 14, 1246–1251. DOI: 10.1038/nbt1096-1246.

    Article  CAS  Google Scholar 

  • Zhang, J., Campbell, R. E., Ting, A. Y., & Tsien, R. Y. (2002) Creating new fluorescent probes for cell biology. Nature Reviews Molecular Cell Biology, 3, 906–918. DOI: 10.1038/nrm976.

    Article  CAS  Google Scholar 

  • Zhang, L. P., Patel, H. N., Lappe, J. W., & Wachter, R. M. (2006) Reaction progress of chromophore biogenesis in green fluorescent protein. Journal of the American Chemical Society, 128, 4766–4772. DOI: 10.1021/ja0580439.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vojtech Adam.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Heger, Z., Zitka, O., Fohlerova, Z. et al. Use of green fluorescent proteins for in vitro biosensing. Chem. Pap. 69, 54–61 (2015). https://doi.org/10.2478/s11696-014-0588-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11696-014-0588-9

Keywords

Navigation