Skip to main content
Log in

Preparation of iron, aluminium, calcium, magnesium, and zinc humates for environmental applications

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

A few non-conventional humate sorbents, i.e. iron humate (FeH), aluminium humate (AlH), calcium humate (CaH), magnesium humate (MgH), and zinc humate (ZnH), were prepared from a commercial product Fortehum L/K (Humatex, Bílina, Czech Republic). The metal content in humates was determined by X-ray fluorescence analysis, the organic elements (C, H, N, and S) were analysed by an Elementar Vario III and the functional groups were determined by classical methods using KBr pellets and diffuse reflection infrared spectroscopy (DRIFTS). FeH, AlH, and ZnH were tested as sorbents for the removal of inorganic or organic pollutants (metals, inorganic ions, dyes, and chlorophenols) from waste water. Sorption properties decreased in order: ZnH, AlH, FeH. CaH and MgH are partly soluble and therefore they are not usable as sorbents. However, their ion-exchange abilities for heavy metals are excellent which makes them usable for phytoremediation and bioremediation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Ahmad, M., Usman, A. R. A, Lee, S. S., Kim, S. C., Joo, J. H., Yang, J. E., & Ok, Y. S. (2012). Eggshell and coral wastes as low cost sorbents for the removal of Pb2+, Cd2+ and Cu2+ from aqueous solutions. Journal of Industrial and Engineering Chemistry, 18, 198–204. DOI: 10.1016/j.jiec.2011.11.013.

    Article  CAS  Google Scholar 

  • Allouche, F. N., Guibal, E., & Mameri, N. (2014). Preparation of a new chitosan-based material and its application for mercury sorption. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 446, 224–232. DOI: 10.1016/j.colsurfa.2014.01.025.

    Article  CAS  Google Scholar 

  • Andini, S., Cioffi, R., Colangelo, F., Montagnaro, F., & Santoro, L. (2008). Adsorption of chlorophenol, chloroaniline and methylene blue on fuel oil fly ash. Journal of Hazardous Materials, 157, 599–604. DOI: 10.1016/j.jhazmat.2008.01.025.

    Article  CAS  Google Scholar 

  • Ariese, F., Swart, K., Morabito, R., Brunori, C., Balzamo, S., Slobodnik, J., Korenková, E., Janoš, P., Wildnerová, M., Hlavay, J., Polyak, K., Fodor, P., & Muntau, H. (2002). Leaching studies of inorganic and organic compounds from fly ash. International Journal of Environmental Analytical Chemistry, 82, 751–770. DOI: 10.1080/0306731031000078.

    Article  CAS  Google Scholar 

  • Babel, S., & Kurniawan, T. A. (2003). Low-cost adsorbents for heavy metals uptake from contaminated water: a review. Journal of Hazardous Materials, 97, 219–243. DOI: 10.1016/s0304-3894(02)00263-7.

    Article  CAS  Google Scholar 

  • Chang Chien, S. W., Chen, C. Y., Chang, J. H., Chen, S. H., Wang, M. C., & Mannepalli, M. R. (2010). Sorption of toluene by humic acids derived from lake sediment and mountain soil at different pH. Journal of Hazardous Materials, 177, 1068–1076. DOI: 10.1016/j.hazmat.2010.01.029.

    Article  CAS  Google Scholar 

  • Chassapis, K., Roulia, M., & Nika, G. (2010). Fe(III)-humate complexes from Megalopolis peaty lignite: A novel ecofriendly fertilizer. Fuel, 89, 1480–1484. DOI: 10.1016/j.fuel.2009.10.005.

    Article  CAS  Google Scholar 

  • Čežíková, L., Novák, J., & Janoš, P. (2001). Humic acids from coals of the North-Bohemian coal field. II. Metal-binding capacity under static conditions. Reactive and Functional Polymers, 47, 111–118. DOI: 10.1016/s1381-5148(00)00078-x.

    Article  Google Scholar 

  • Dąbrowski, A., Podkościelny, P., Hubicki, Z., & Barczak, M. (2005). Adsorption of phenolic compounds by activated carbon-a critical review. Chemosphere, 58, 1049–1070. DOI: 10.1016/j.chemosphere.2004.09.067.

    Article  Google Scholar 

  • Dulman, V., & Cucu-Man, S. M. (2009). Sorption of some textile dyes by beech wood sawdust. Journal of Hazardous Materials, 162, 1457–1464. DOI: 10.1016/j.jhazmat.2008.06.046.

    Article  CAS  Google Scholar 

  • European Committee for Standardization (2011). European standard: Soil improvers and growing media. Determination of organic matter content and ash. EN 13039. Brussels, Belgium.

    Google Scholar 

  • Georgi, A., Trommler, U., Reichl, A., & Kopinke, F. D. (2008). Influence of sorption to dissolved humic substances on transformation reactions of hydrophobic organic compounds in water. Part II: Hydrolysis reactions. Chemosphere, 71, 1452–1460. DOI: 10.1016/j.chemosphere.2007.12.001.

    CAS  Google Scholar 

  • Güngör, E. B. Ö., & Bekbölet, M. (2010). Zinc release by humic and fulvic acid as influenced by pH, complexation and DOC sorption. Geoderma, 159, 131–138, DOI: 10.1016/j.geoderma.2010.07.004.

    Article  Google Scholar 

  • Hamidpour, M., Kalbasi, M., Afyuni, M., Shariatmadari, H., Holm, P. E., & Hansen, H. C. B. (2010). Sorption hysteresis of Cd(II) and Pb(II) on natural zeolite and bentonite. Journal of Hazardous Materials, 181, 686–691. DOI: 10.1016/j.jhazmat.2010.05.067.

    Article  CAS  Google Scholar 

  • Havelcová, M., Mizera, J., Sykorová, I., & Pekař, M. (2009). Sorption of metal ions on lignite and the derived humic substances. Journal of Hazardous Materials, 161, 559–564. DOI: 10.1016/j.jhazmat.2008.03.136.

    Article  Google Scholar 

  • Janoš, P., Buchtová, H., & Ryznarová, M. (2003). Sorption of dyes from aqueous solutions onto fly ash. Water Research, 37, 4938–4944. DOI: 10.1016/j.watres.2003.08.011.

    Article  Google Scholar 

  • Janoš, P., Šedivá, M., & Grötschelová, S. (2005). Sorption of basic and acid dyes from aqueous solutions onto oxihumolite. Chemosphere, 59, 881–886. DOI: 10.1016/j.chemosphere.2004.11.018.

    Article  Google Scholar 

  • Janoš, P., Fedorovič, J., Staňková, P., Grötschelová, S., Rejnek, J., & Stopka, P. (2006). Iron humate as a low-cost sorbent for metal ions. Environmental Technology, 27, 169–181. DOI: 10.1080/09593332708618627.

    Article  Google Scholar 

  • Janoš, P., Michálek, P., & Turek, L. (2007a). Sorption of ionic dyes onto untreated low-rank coal — oxihumolite: A kinetic study. Dyes and Pigments, 74, 363–370. DOI: 10.1016/j.dyepig.2006.02.017.

    Article  Google Scholar 

  • Janoš, P., Sypecká, J., Mlčkovskáň, P., & Pilařov, V. (2007b). Removal of metal ions from aqueous solutions by sorption onto untreated low-rank coal (oxihumolite). Separation and Purification Technology, 53, 322–329. DOI: 10.1016/j.seppur.2006.08.004.

    Article  Google Scholar 

  • Janoš, P., Křiženeck, S., & Madronová, L. (2008). Acid-base titration curves of solid humic acids. Reactive and Functional Polymers, 68, 242–247. DOI: 10.1016/j.reactfunctpolym.2007.09.005.

    Article  Google Scholar 

  • Janoš, P., Coskun, S., Pilařov Removal of basic (Methylene Blue) and acid (Egacid Orange) dyes from waters by sorption on chemically treated wood shavings. Bioresource Technology, 100, 1450–1453. DOI: 10.1016/j.biortech.2008.06.069.

  • Janoš, P., Hůla, V., Bradnová, P., Pilařová, V., Šedlbauer, J. (2009b). Reduction and immobilization of hexavalent chromium with coal- and humate-based sorbents. Chemosphere, 75, 732–738. DOI: 10.1016/j.chemosphere.2009.01.037.

    Article  Google Scholar 

  • Jha, V. K., Matsuda, M., & Miyake, M. (2008). Sorption properties of the activated carbon-zeolite composite prepared from coal fly ash for Ni2+, Cu2+, Cd2+ and Pb2+. Journal of Hazardous Materials, 160, 148–153. DOI: 10.1016/j.jhazmat.2008.02.107.

    Article  CAS  Google Scholar 

  • Kamble, S. P., Mangrulkar, P. A., Bansiwal, A. K., & Rayalu, S. S. (2008). Adsorption of phenol and o-chlorophenol on surface altered fly ash based molecular sieves. Chemical Engineering Journal, 138, 73–83. DOI: 10.1016/j.cej.2007.05.030.

    Article  CAS  Google Scholar 

  • Kuráň, P., Trögl, J., Nováková, J., Pilařováňová, P., Pavlorková, J., Kozler, J., Novák, F., & Popelka, J. (2014). Biodegradation of spilled diesel fuel in agricultural soil: effect of humates, zeolite, and bioaugmentation. The Scientific World Journal, 2014, 642427. DOI: 10.1155/2014/642427.

    Google Scholar 

  • Kurková, M., Klika, Z., Kliková, Ch., & Havel, J. (2004). Humic acids from oxidized coals: I. Elemental composition, titration curves, heavy metals in HA samples, nuclear magnetic resonance spectra of HAs and infrared spectroscopy. Chemosphere, 54, 1237–1245. DOI: 10.1016/j.chemosphere.2003.10.020.

    Article  Google Scholar 

  • Kyziol, J., Twardowska, I., & Schmitt-Kopplin, Ph. (2006). The role of humic substances in chromium sorption onto natural organic matter (peat). Chemosphere, 63, 1974–1982, DOI: 10.1016/j.chemosphere.2005.09.042.

    Article  CAS  Google Scholar 

  • Lipczynska-Kochany, E., & Kochany, J. (2009). Effect of humate on biological treatment of wastewater containing heavy metals. Chemosphere, 77, 279–284. DOI: 10.1016/j.chemosphere.2009.07.036.

    Article  CAS  Google Scholar 

  • Li, B. Z., Sun, K. Q., Guo, Y. B., Tian, J. P., Xue, Y. B., & Sun, D. K. (2013). Adsorption kinetics of phenol from water on Fe/AC. Fuel, 110, 99–106. DOI: 10.1016/j.fuel.2012.10.043.

    Article  CAS  Google Scholar 

  • Liu, X., & Pinto, N. G. (1997). Ideal adsorbed phase model for adsorption of phenolic compounds on activated carbon. Carbon, 35, 1387–1397. DOI: 10.1016/s0008-6223(97)00092-4.

    Article  CAS  Google Scholar 

  • Lyngsie, G., Borggaard, O. K., & Hansen, H. C. B. (2014). A three-step test of phosphate sorption efficiency of potential agricultural drainage filter materials. Water Research, 51, 256–265. DOI: 10.1016/j.watres.2013.10.061.

    Article  CAS  Google Scholar 

  • Madronová, L. (Ed.) (2011). Humic acids from raw materials of the Czech Republic. New York, NY, USA: Nova Science Publishers.

    Google Scholar 

  • Neves Fernandes, A., Policiano Almeida, C. A., Debacher, N. A., & de Souza Sierra, M. M. (2010). Isotherm and thermodynamic data of adsorption of methylene blue from aqueous solution onto peat. Journal of Molecular Structure, 982, 62–65. DOI: 10.1016/j.molstruc.2010.08.006.

    Article  Google Scholar 

  • Nurchi, V. M., & Villaescusa, I. (2012). Sorption of toxic metal ions by solid sorbents: A predictive speciation approach based on complex formation constants in aqueous solution. Coordination Chemistry Reviews, 256, 212–221. DOI: 10.1016/j.ccr.2011.09.002.

    Article  CAS  Google Scholar 

  • Lubal, P., Širok and complexation properties of humic acids: Study of complexation of Czech humic acids with metal ions. Talanta, 47, 401–412. DOI: 10.1016/s0039-9140(98)00143-x. x

  • Rodríguez, A., García, J., Ovejero, G., & Mestanza, M. (2009). Adsorption of anionic and cationic dyes on activated carbon from aqueous solutions: Equilibrium and kinetics. Journal of Hazardous Materials, 172, 1311–1320. DOI: 10.1016/j.jhazmat.2009.07.138.

    Article  Google Scholar 

  • Salleh, M. A. M., Mahmoud, D. K., Karim, W. A. W. A., & Idris, A. (2011). Cationic and anionic dye adsorption by agricultural solid wastes: A comprehensive review. Desalination, 280, 1–13. DOI: 10.1016/j.desal.2011.07.019.

    Article  CAS  Google Scholar 

  • Turgay, O. C., Erdogan, E. E., & Karaca, A. (2010). Effect of humic deposit (leonardite) on degradation of semivolatile and heavy hydrocarbons and soil quality in crude-oilcontaminated soil. Environmental Monitoring and Assessment, 170, 45–58. DOI: 10.1007/s10661-009-1213-1.

    Article  CAS  Google Scholar 

  • Yi, J. Z., & Zhang, L. M. (2008). Removal of methylene blue dye from aqueous solution by adsorption onto sodium humate/polyacrylamide/clay hybrid hydrogels. Bioresource Technology, 99, 2182–2186. DOI: 10.1016/j.biortech.2007.05.028.

    Article  CAS  Google Scholar 

  • Yousef, R. I., & El-Eswed, B. (2009). The effect of pH on the adsorption of phenol and chlorophenols onto natural zeolite. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 334, 92–99. DOI: 10.1016/j.colsurfa.2008.10.004.

    Article  CAS  Google Scholar 

  • Zeledón-Toruño, Z., Lao-Luque, C., & Solé-Sardans, M. (2005). Nickel and copper removal from aqueous solution by an immature coal (leonardite): effect of pH, contact tome and water hardness. Journal of Chemical Technology and Biotechnology, 80, 649–656. DOI: 10.1002/jctb.1243.

    Article  Google Scholar 

  • Zhang, Q., Zhao, L., Dong, Y. H., & Huang, G. Y. (2012). Sorption of norfloxacin onto humic acid extracted from weathered coal. Journal of Environmental Management, 102, 165–172. DOI: 10.1016/j.jenvman.2011.12.036.

    Article  CAS  Google Scholar 

  • Zhuo, L., Li, H., Cheng, F. Q., Shi, Y. L., Zhang, Q. H., & Shi, W. Y. (2012). Co-remediation of cadmium-polluted soil using stainless slag and ammonium humate. Environmental Science and Pollution Research, 19, 2842–2848. DOI: 10.1007/s11356-012-0790-7.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sylvie Kříženecká.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kříženecká, S., Hejda, S., Machovič, V. et al. Preparation of iron, aluminium, calcium, magnesium, and zinc humates for environmental applications. Chem. Pap. 68, 1443–1451 (2014). https://doi.org/10.2478/s11696-014-0586-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11696-014-0586-y

Keywords

Navigation