Skip to main content
Log in

Fouling of nanofiltration membranes used for separation of fermented glycerol solutions

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

In this study, the glycerol solutions were fermented using Lactobacillus casei bacteria. The broths were pre-treated by microfiltration, followed by a further separation with nanofiltration. The latter process was carried out in two stages, using the NF270 and NF90 membranes, respectively. The concentrates thus obtained were enriched with citric acid (first stage) and then with lactic acid and glycerol (second stage). By means of SEM and AFM microscopy, as well as ATR-FTIR analysis, the intensity of membrane-fouling was studied. The colloidal fouling and bio-fouling caused a more than two-fold decrease in the permeate flux during microfiltration of the broth. This pre-treatment stage was effective, and a permeate turbidity of less than 0.2 NTU was obtained. However, the nanofiltration membranes exhibited a 30 % flux decline over the course of the process, mainly due to the organic fouling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Annand, P., Saxena, R. K., & Marwah, R. G. (2011). A novel downstream process for 1,3-propanediol from glycerol-based fermentation. Applied Microbiology and Biotechnology, 90, 1267–1276. DOI: 10.1007/s00253-011-3161-2.

    Article  Google Scholar 

  • Barbirato, F., Himmi, E. H., Conte, T., & Bories, A. (1998). 1,3-Propanediol production by fermentation: An interesting way to valorize glycerin from the ester and ethanol industries. Industrial Crops and Products, 7, 281–289. DOI: 10.1016/s0926-6690(97)00059-9.

    Article  CAS  Google Scholar 

  • Belfer, S., Fainshtain, R., Purinson, Y., Gilron, J., Nyström, M., & Mänttäri, M. (2004). Modification of NF membrane properties by in situ redox initiated graft polymerization with hydrophilic monomers. Journal of Membrane Science, 239, 55–64. DOI: 10.1016/j.memsci.2003.09.029.

    Article  CAS  Google Scholar 

  • Bellona, C., Marts, M., & Drewes, J. E. (2010). The effect of organic membrane fouling on the properties and rejection characteristics of nanofiltration membranes. Separation and Purification Technology, 74, 44–54. DOI: 10.1016/j.seppur.2010.05.006.

    Article  CAS  Google Scholar 

  • Drożdżyńska, A., Leja, K., & Czaczyk, K. (2011). Biotechnological production of 1,3-propanediol from crude glycerol. BioTechnologia — Journal of Biotechnology, Computational Biology and Bionanotechnology, 92, 92–100.

    Google Scholar 

  • González, M. I., Alvarez, S., Riera, F. A., & álvarez, R. (2008). Lactic acid recovery from whey ultrafiltrate fermentation broths and artificial solutions by nanofiltration. Desalination, 228, 84–96. DOI: 10.1016/j.desal.2007.08.009.

    Article  Google Scholar 

  • Gryta, M., Bastrzyk, J., & Lech, D. (2012). Evaluation of fouling potential of nanofiltration membranes based on the dynamic contact angle measurements. Polish Journal of Chemical Technology, 14, 97–104. DOI: 10.2478/v10026-012-0091-4.

    Article  Google Scholar 

  • Gryta, M., Markowska-Szczupak, A., Bastrzyk, J., & Tomczak, W. (2013). The study of membrane distillation used for separation of fermenting glycerol solutions. Journal of Membrane Science, 431, 1–8. DOI: 10.1016/j.memsci.2012.12.032.

    Article  CAS  Google Scholar 

  • Himstedt, H. H, Marshall, K. M., & Wickramasinghe, S. R. (2011). pH-responsive nanofiltration membranes by surface modification. Journal of Membrane Science, 366, 373–381. DOI: 10.1016/j.memsci.2010.10.027.

    Article  CAS  Google Scholar 

  • Hoek, E. M. V., Bhattacharjee, S., & Elimelech, M. (2003). Effect of membrane surface roughness on colloid-membrane DLVO interactions. Langmuir, 19, 4836–4847. DOI: 10.1021/la027083c.

    Article  CAS  Google Scholar 

  • Howe, K. J., Ishida, K. P., & Clark, M. M. (2002). Use of ATR/FTIR spectrometry to study fouling of microfiltration membranes by natural waters. Desalination, 147, 251–255. DOI: 10.1016/s0011-9164(02)00545-3.

    Article  CAS  Google Scholar 

  • Karakulski, K., Gryta, M., & Bastrzyk, J. (2013). Treatment of effluents from a membrane bioreactor by nanofiltration using tubular membranes. Chemical Papers, 67, 1164–1171 DOI: 10.2478/s11696-013-0314-z.

    Article  CAS  Google Scholar 

  • Kosvintsev, S., Cumming, I., Holdich, R., Lloyd, D., & Starov, V. (2004). Sieve mechanism of microfiltration separation. Colloids and Surfaces A: Physicochemical Engineering Aspects, 230, 167–182. DOI: 10.1016/j.colsurfa.2003.09.027.

    Article  Google Scholar 

  • Lee, D. J., Chen, G. Y., Chang, Y. R., & Lee, K. R. (2012). Harvesting of chitosan coagulated Chlorella vulgaris using cyclic membrane filtration-cleaning. Journal of the Taiwan Institute of Chemical Engineers, 43, 948–952. DOI: 10.1016/j.jtice.2012.07.002.

    Article  CAS  Google Scholar 

  • Luo, J., & Wan, Y. (2011). Effect of highly concentrated salt on retention of organic solutes by nanofiltration polymeric membranes. Journal of Membrane Science, 372, 145–153. DOI: 10.1016/j.memsci.2011.01.066.

    Article  CAS  Google Scholar 

  • Mohammad, A. W., Basha, R. K., & Leo, C. P. (2010). Nanofiltration of glucose solution containing salts: Effects of membrane characteristics, organics component and salts on retention. Journal of Food Engineering, 97, 510–518. DOI: 10.1016/j.jfoodeng.2009.11.010.

    Article  CAS  Google Scholar 

  • Norberg, D., Hong, S., Taylor, J., & Zhao, Y. (2007). Surface characterization and performance evaluation of commercial fouling resistant low-pressure RO membranes. Desalination, 202, 45–52. DOI: 10.1016/j.desal.2005.12.037.

    Article  CAS  Google Scholar 

  • Oatley, D. L., Llenas, L., Pérez, R., Williams, P. M., Martínez-Lladó, X., & Rovira, M. (2012). Review of the dielectric properties of nanofiltration membranes and verification of the single oriented layer approximation. Advances in Colloid and Interface Science, 173, 1–11. DOI: 10.1016/j.cis.2012.02.001.

    Article  CAS  Google Scholar 

  • Subramani, A., & Hoek, E. M. V. (2010). Biofilm formation, cleaning, re-formation on polyamide composite membranes. Desalination, 257, 73–79. DOI: 10.1016/j.desal.2010.03.003.

    Article  CAS  Google Scholar 

  • Tang, C. Y., Kwon, Y. N., & Leckie, J. O. (2009). Effect of membrane chemistry and coating layer on physiochemical properties of thin film composite polyamide RO and NF membranes II. Membrane physiochemical properties and their dependence on polyamide and coating layers. Desalination, 242, 168–182. DOI: 10.1016/j.desal.2008.04.004.

    Article  CAS  Google Scholar 

  • Tanninen, J., Mänttäri, M., & Nyström, M. (2006). Effect of salt mixture concentration on fractionation with NF membranes. Journal of Membrane Science, 283, 57–64. DOI: 10.1016/j.memsci.2006.06.012.

    Article  CAS  Google Scholar 

  • Van der Bruggen, B., Schaep, J., Wilms, D., & Vandecasteele, C. (1999). Influence of molecular size, polarity and charge on the retention of organic molecules by nanofiltration. Journal of Membrane Science, 156, 29–41. DOI: 10.1016/s0376-7388(98)00326-3.

    Article  Google Scholar 

  • Weng, Y. H., Wei, H. J., Tsai, T. Y., Chen, W. H., Wei, T. Y., Hwang, W. S., Wang, C. P., & Huang, C. P. (2009). Separation of acetic acid from xylose by nanofiltration. Separation and Purification Technology, 67, 95–102. DOI: 10.1016/j.seppur.2009.03.030.

    Article  CAS  Google Scholar 

  • Wu, R. C., Ren, H. J., Xu, Y. Z., & Liu, D. H. (2010). The final recover of salt from 1,3-propanadiol fermentation broth. Separation and Purification Technology, 73, 122–125. DOI: 10.1016/j.seppur.2010.03.013.

    Article  CAS  Google Scholar 

  • Xiu, Z. L., & Zeng, A. P. (2008). Present state and perspective of downstream processing of biologically produced 1,3-propanediol and 2,3-butanediol. Applied Microbiology and Biotechnology, 78, 917–926. DOI: 10.1007/s00253-008-1387-4.

    Article  CAS  Google Scholar 

  • Xu, P., Drewes, J. E., Kim, T. U., Bellona, C., & Amy, G. (2006). Effect of membrane fouling on transport of organic contaminants in NF/RO membrane applications. Journal of Membrane Science, 279, 165–175. DOI: 10.1016/j.memsci.2005.12.001.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marek Gryta.

Additional information

Presented at the 40th International Conference of the Slovak Society of Chemical Engineering, Tatranské Matliare, 27–31 May 2013.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bastrzyk, J., Gryta, M. & Karakulski, K. Fouling of nanofiltration membranes used for separation of fermented glycerol solutions. Chem. Pap. 68, 757–765 (2014). https://doi.org/10.2478/s11696-013-0520-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11696-013-0520-8

Keywords

Navigation