Skip to main content
Log in

MgZnAl hydrotalcite-like compounds preparation by a green method: effect of zinc content

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

A series of MgZnAl hydrotalcite-like compounds with different zinc content (1–25 mass % of nominal zinc content) were prepared by a simple and environmentally-friendly method. The solids were characterized by X-ray powder diffraction (XRD), thermogravimetric (TG), nitrogen adsorption-desorption at −196°C (BET), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), and CO2 temperature-programmed desorption (CO2-TPD). Transesterification of castor oil with methanol was selected as a probe reaction to stress the effect of zinc incorporation. From the XRD analysis of fresh samples it was demonstrated that the incorporation of zinc is feasible in the nominal range of 1–10 mass % while in the samples with higher zinc content, zinc nitrate and ZnO as secondary crystalline phases were observed. Furthermore, the analysis of samples calcined at 450°C indicated the coexistence of the ZnO and MgO crystalline phases. From the EDS and TG characterizations, the zinc percentage and thermal decomposition of the samples were determined. It was revealed that the samples exhibited the characteristic platy-like habit of hydrotalcite-like compounds. The BET analysis confirmed that the calcined samples presented an increment in their specific surface area values compared with the pristine ones. It was established that the amount of basic sites diminished with the zinc incorporation, which also affected the conversion degree of the transesterification reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Álvarez, M. G., Chimentáo, R. J., Figueras, F., & Medina, F. (2012). Tunable basic and textural properties of hydrotalcite derived materials for transesterification of glycerol. Applied Clay Science, 58, 16–24. DOI: 10.1016/j.clay.2012.02.004.

    Article  Google Scholar 

  • Babu, N. S., Sree, R., Prasad, P. S. S., & Lingaiah, N. (2008). Room-temperature transesterification of edible and nonedible oils using a heterogeneous strong basic Mg/La catalyst. Energy & Fuels, 22, 1965–1971. DOI: 10.1021/ef700687w.

    Article  CAS  Google Scholar 

  • Bezen, M. C. I., Breitkopf, C., & Lercher, J. A. (2011). On the acid-base properties of Zn-Mg-Al mixed oxides. Applied Catalysis A: General, 399, 93–99. DOI: 10.1016/j.apcata.2011.03.053.

    Article  CAS  Google Scholar 

  • Brindley, G.W., & Kikkawa, S. (1979). A crystal-chemical study of Mg,Al and Ni,Al hydroxyl-perchlorates and hydroxylcarbonates. American Mineralogist, 64, 836–843.

    CAS  Google Scholar 

  • Cantú, M., López-Salinas, E., Valente, J. S., & Montiel, R. (2005). SOx removal by calcined MgAlFe hydrotalcite-like materials: Effect of the chemical composition and the cerium incorporation method. Environmental Science and Technology, 39, 9715–9720. DOI: 10.1021/es051305m.

    Article  Google Scholar 

  • Carja, G., Nakamura, R., Aida, T., & Niiyama, H. (2001). Textural properties of layered double hydroxides: effect of magnesium substitution by copper or iron. Microporous and Mesoporous Materials, 47, 275–284. DOI: 10.1016/s1387-1811(01)00387-0.

    Article  CAS  Google Scholar 

  • Cavani, F., Trifirò, F., & Vaccari, A. (1991). Hydrotalcitetype anionic clays: Preparation, properties and applications. Catalysis Today, 11, 173–301. DOI: 10.1016/0920-5861(91)80068-k.

    Article  CAS  Google Scholar 

  • Chmielarz, L., Kuśtrowski, P., Rafalska-Łasocha, A., & Dziembaj, R. (2002). Influence of Cu, Co and Ni cations incorporated in brucite-type layers on thermal behaviour of hydrotalcites and reducibility of the derived mixed oxide systems. Thermochimica Acta, 395, 225–236. DOI: 10.1016/s0040-6031(02)00214-9.

    Article  Google Scholar 

  • Costantino, U., Coletti, N., Nocchetti, M., Aloisi, G. G., & Elisei, F. (1999). Anion exchange of methyl orange into Zn-Al synthetic hydrotalcite and photophysical characterization of the intercalates obtained. Langmuir, 15, 4454–4460. DOI: 10.1021/la981672u.

    Article  CAS  Google Scholar 

  • Di Serio, M., Ledda, M., Cozzolino M., Minutillo, G., Tesser, R., & Santacesaria, E. (2006). Transesterification of soybean oil to biodiesel by using heterogeneous basic catalysts. Industrial & Engineering Chemistry Research, 45, 3009–3014. DOI: 10.1021/ie051402o.

    Article  Google Scholar 

  • Dudek, B., Kuśtrowski, P., Białas, A., Natkański, P., Piwowarska, Z., Chmielarz, L., Kozak, M., & Michalik, M. (2012). Influence of textural and structural properties of Mg-Al and Mg-Zn-Al containing hydrotalcite derived oxides on Cr(VI) adsorption capacity. Materials Chemistry and Physics, 132, 929–936 DOI: 10.1016/j.matchemphys.2011.12.037.

    Article  CAS  Google Scholar 

  • Gastuche, M. C., Brown, G., & Mortland, M. M. (1967). Mixed magnesium-aluminium hydroxides: I. Preparation and characterization of compounds formed in dialysed systems. Clay Minerals, 7, 177–192.

    Article  Google Scholar 

  • Hattori, H. (1995). Heterogeneous basic catalysis. Chemical Reviews, 95, 537–558. DOI: 10.1021/cr00035a005.

    Article  CAS  Google Scholar 

  • Kasprzyk-Hordern, B. (2004). Chemistry of alumina, reactions in aqueous solution and its application in water treatment. Advances in Colloid and Interface Science, 110, 19–48. DOI: 10.1016/j.cis.2004.02.002.

    Article  CAS  Google Scholar 

  • Kloprogge, J. T., Hickey, L., & Frost, R. L. (2004). The effects of synthesis pH and hydrothermal treatment on the formation of zinc aluminum hydrotalcites. Journal of Solid State Chemistry, 177, 4047–4057. DOI: 10.1016/j.jssc.2004.07.010.

    Article  CAS  Google Scholar 

  • Knothe, G. (2000). Monitoring a progressing transesterification reaction by fiber-optic near infrared spectroscopy with correlation to 1H nuclear magnetic resonance spectroscopy. Journal of the American Oil Chemists’ Society, 77, 489–493. DOI: 10.1007/s11746-000-0078-5.

    Article  CAS  Google Scholar 

  • Kooli, F., Kosuge, K., & Tsunashima, A. (1995). Mg-Zn-Al-CO3 and Mg-Cu-Al-CO3 hydrotalcite-like compounds: Preparation and characterization. Journal of Materials Science, 30, 4591–4597. DOI: 10.1007/bf01153066.

    Article  CAS  Google Scholar 

  • Kunde L. B., Gade S. M., Kalyani V. S., & Gupte, S. P. (2009). Catalytic synthesis of chalcone and flavanone using Zn-Al hydrotalcite adhere ionic liquid. Catalysis Communications, 10, 1881–1888. DOI: 10.1016/j.catcom.2009.06.018.

    Article  CAS  Google Scholar 

  • Ludvíková, J., Jirátová, K., & Kovanda, F. (2012). Mixed oxides of transition metals as catalysts for total ethanol oxidation. Chemical Papers, 66, 589–597. DOI: 10.2478/s11696-011-0127-x.

    Article  Google Scholar 

  • Miyata, S. (1975). The syntheses of hydrotalcite-like compounds and their structures and physico-chemical properties I: The systems Mg2+-Al3+-NO 3 , Mg2+-Al3+-Cl, Mg2+-Al3+-ClO 4 , Ni2+-Al3+-Cl and Zn2+-Al3+-Cl. Clays and Clay Minerals, 23, 369–375. DOI: 10.1346/ccmn.1975.0230508.

    Article  CAS  Google Scholar 

  • Miyata, S. (1980) Physico-chemical properties of synthetic hydrotalcites in relation to composition. Clays and Clay Minerals, 28, 50–56. DOI: 10.1346/ccmn.1980.0280107.

    Article  CAS  Google Scholar 

  • Miyata, S. (1983). Anion-exchange properties of hydrotalcitelike compounds. Clays and Clay Minerals, 31, 305–311. DOI: 10.1346/ccmn.1983.0310409.

    Article  CAS  Google Scholar 

  • Padmasri, A. H., Venugopal, A., Kumari, V. D., Rao, K. S. R., & Rao, P. K. (2002). Calcined Mg-Al, Mg-Cr and Zn-Al hydrotalcite catalysts for tert-butylation of phenol with iso-butanol-a comparative study. Journal of Molecular Catalysis A: Chemical, 188, 255–265. DOI: 10.1016/s1381-1169(02)00356-4.

    Article  CAS  Google Scholar 

  • Radha, A. V., Kamath, P. V., & Shivakumara, C. (2007). Conservation of order, disorder, and “crystallinity” during anionexchange reactions among layered double hydroxides (LDHs) of Zn with Al. The Journal of Physical Chemistry B, 111, 3411–3418. DOI: 10.1021/jp0684170.

    Article  CAS  Google Scholar 

  • Reichle, W. T., Kang, S. Y., & Everhardt, D. S. (1986). The nature of the thermal decomposition of a catalytically active anionic clay mineral. Journal of Catalysis, 101, 352–359. DOI: 10.1016/0021-9517(86)90262-9.

    Article  CAS  Google Scholar 

  • Sanchez-Cantu, M., Perez-Diaz, L. M., Maubert, A. M., & Valente, J. S. (2010). Dependence of chemical composition of calcined hydrotalcite-like compounds for SOx reduction. Catalysis Today, 150, 332–339. DOI: 10.1016/j.cattod.2009.09.010.

    Article  CAS  Google Scholar 

  • Sánchez-Cantú, M., Pérez-Díaz, L. M., Tepale-Ochoa, N., González-Coronel, V. J., Ramos-Cassellis, M. E., Machorro-Aguirre, D., & Valente, J. S. (2013). Green synthesis of hydrocalumite-type compounds and their evaluation in the transesterification of castor bean oil and methanol. Fuel, 110, 23–31. DOI: 10.1016/j.fuel.2012.06.078.

    Article  Google Scholar 

  • Sels, B. F., De Vos, D. E., & Jacobs, P. A. (2001). Hydrotalcitelike anionic clays in catalytic organic reactions. Catalysis Reviews, 43, 443–488. DOI: 10.1081/cr-120001809.

    Article  CAS  Google Scholar 

  • Stamires, D., & O’Connor, P. (2003). U.S. Patent No. 6,589,902. Washington, DC: U.S. Patent and Trademark Office.

    Google Scholar 

  • Tzompantzi, F., Valente, J. S., Cantú, M. S., & Gómez, R. (2007). Gas-phase acetone condensation over hydrotalcitelike catalysts. In S. R. Schmidt (Ed.), Catalysis of organic reactions (pp. 55–59). Boca Raton, FL, USA: CRC Press.

    Google Scholar 

  • Valente, J. S., Figueras, F., Gravelle, M., Kumbhar, P., Lopez, J., & Besse, J. P. (2000). Basic properties of the mixed oxides obtained by thermal decomposition of hydrotalcites containing different metallic compositions. Journal of Catalysis, 189, 370–381. DOI: 10.1006/jcat.1999.2706.

    Article  CAS  Google Scholar 

  • Valente, J. S., Cantú, M. S., Cortez, J. G. H., Montiel, R., Bokhimi, X., & López-Salinas, E. (2007). Preparation and characterization of sol-gel MgAl hydrotalcites with nanocapsular morphology. The Journal of Physical Chemistry C, 111, 642–651. DOI: 10.1021/jp065283h.

    Article  CAS  Google Scholar 

  • Valente, J. S., Cantu, M. S., & Figueras, F. (2008). A simple environmentally friendly method to prepare versatile hydrotalcite-like compounds. Chemistry of Materials, 20, 1230–1232. DOI: 10.1021/cm7031306.

    Article  CAS  Google Scholar 

  • Valente, J. S., Sánchez-Cantú, M., Lima, E., & Figueras, F. (2009a). Method for large-scale production of multimetallic layered double hydroxides: Formation mechanism discernment. Chemistry of Materials, 21, 5809–5818. DOI: 10.1021/cm902377p.

    Article  CAS  Google Scholar 

  • Valente, J. S., Tzompantzi, F., Prince, J., Cortez, J. G. H., & Gomez, R. (2009b). Adsorption and photocatalytic degradation of phenol and 2,4 dichlorophenoxiacetic acid by Mg-Zn-Al layered double hydroxides. Applied Catalysis B: Environmental, 90, 330–338. DOI: 10.1016/j.apcatb.2009.03.019.

    Article  CAS  Google Scholar 

  • Valente, J. S., Prince, J., Maubert, A. M., Lartundo-Rojas, L., del Angel, P., Ferrat, G., Hernandez, J. G., & Lopez-Salinas, E. (2009c). Physicochemical study of nanocapsular layered double hydroxides evolution. The Journal of Physical Chemistry C, 113, 5547–5555. DOI: 10.1021/jp810293y.

    Article  CAS  Google Scholar 

  • Valente, J. S., Hernandez-Cortez, J., Cantu, M. S., Ferrat, G., & López-Salinas, E. (2010). Calcined layered double hydroxides Mg-Me-Al (Me: Cu, Fe, Ni, Zn) as bifunctional catalysts. Catalysis Today, 150, 340–345. DOI: 10.1016/j.cattod.2009.08.020.

    Article  CAS  Google Scholar 

  • Wan, D. J., Liu, H. J., Liu, R. P., Qu, J. H., Li, S. S., & Zhang, J. (2012). Adsorption of nitrate and nitrite from aqueous solution onto calcined (Mg-Al) hydrotalcite of different Mg/Al ratio. Chemical Engineering Journal, 195–196, 241–247. DOI: 10.1016/j.cej.2012.04.088.

    Article  Google Scholar 

  • Xie, W. L., Peng, H., & Chen, L. G. (2006). Calcined Mg-Al hydrotalcites as solid base catalysts for methanolysis of soybean oil. Journal of Molecular Catalysis A: Chemical, 246, 24–32. DOI: 10.1016/j.molcata.2005.10.008.

    Article  CAS  Google Scholar 

  • Xu, Z. P., & Zeng, H. C. (2001). Abrupt structural transformation in hydrotalcite-like compounds Mg1−x Alx(OH)2(NO3)x · nH2O as a continuous function of nitrate anions. The Journal of Physical Chemistry B, 105, 1743–1749. DOI: 10.1021/jp0029257.

    Article  CAS  Google Scholar 

  • Yun, S. K., & Pinnavaia, T. J. (1995). Water content and particle texture of synthetic hydrotalcite-like layered double hydroxides. Chemistry of Materials, 7, 348–354. DOI: 10.1021/cm00050a017.

    Article  CAS  Google Scholar 

  • Zümreoglu-Karan, B., & Ay, A. N. (2012). Layered double hydroxides-multifunctional nanomaterials. Chemical Papers, 66, 1–10. DOI: 10.2478/s11696-011-0100-8.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuel Sánchez-Cantú.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sánchez-Cantú, M., Pérez-Díaz, L.M., Rubio-Rosas, E. et al. MgZnAl hydrotalcite-like compounds preparation by a green method: effect of zinc content. Chem. Pap. 68, 638–649 (2014). https://doi.org/10.2478/s11696-013-0491-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11696-013-0491-9

Keywords

Navigation