Skip to main content
Log in

Diesel soot combustion catalysts: review of active phases

  • Review
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

The most relevant information about the different active phases that have been studied for the catalytic combustion of soot is reviewed and discussed in this article. Many catalysts have been reported to accelerate soot combustion, including formulations with noble metals, alkaline metals and alkaline earth metals, transition metals that can accomplish redox cycles (V, Mn, Co, Cu, Fe, etc.), and internal transition metals. Platinum catalysts are among those of most interest for practical applications, and an important feature of these catalysts is that sulphur-resistant platinum formulations have been prepared. Some metal oxide-based catalysts also appear to be promising candidates for soot combustion in practical applications, including ceria-based formulations and mixed oxides with perovskite and spinel structures. Some of these metal oxide catalysts produce highly reactive active oxygen species that promote efficient soot combustion. Thermal stability is an important requirement for a soot combustion catalyst, which precludes the practical utilisation of several potential catalysts such as most alkaline metal catalysts, molten salts, and metal chlorides. Some noble metal catalysts are also unstable due to the formation of volatile oxides (ruthenium, iridium, and osmium).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • An, H. M., Kilroy, C., & McGinn, P. J. (2004). Combinatorial synthesis and characterization of alkali metal doped oxides for diesel soot combustion. Catalysis Today, 98, 423–429. DOI: 10.1016/j.cattod.2004.08.006.

    CAS  Google Scholar 

  • An, H. M., & McGinn, P. J. (2006). Catalytic behavior of potassium containing compounds for diesel soot combustion. Applied Catalysis B: Environmental, 62, 46–56. DOI: 10.1016/j.apcatb.2005.06.013.

    CAS  Google Scholar 

  • Aneggi, E., de Leitenburg, C., Dolcetti, G., & Trovarelli, A. (2006). Promotional effect of rare earths and transition metals in the combustion of diesel soot over CeO2 and CeO2-ZrO2. Catalysis Today, 114, 40–47. DOI: 10.1016/j.cattod. 2006.02.008.

    CAS  Google Scholar 

  • Aneggi, E., de Leitenburg, C., Dolcetti, G., & Trovarelli, A. (2008). Diesel soot combustion activity of ceria promoted with alkali metals. Catalysis Today, 136, 3–10. DOI: 10.1016/j.cattod.2008.01.002.

    CAS  Google Scholar 

  • Aneggi, E., Llorca, J., de Leitenburg, C., Dolcetti, G., & Trovarelli, A. (2009). Soot combustion over silver-supported catalysts. Applied Catalysis B: Environmental, 91, 489–498. DOI: 10.1016/j.apcatb.2009.06.019.

    CAS  Google Scholar 

  • Aneggi, E., de Leitenburg, C., Llorca, J., & Trovarelli, A. (2012). Higher activity of Diesel soot oxidation over polycrystalline ceria and ceria-zirconia solid solutions from more reactive surface planes. Catalysis Today, 197, 119–126. DOI: 10.1016/j.cattod.2012.07.030.

    CAS  Google Scholar 

  • Atribak, I., Such-Basáñez, I., Bueno-López, A., & García, A. (2007). Comparison of the catalytic activity of MO2 (M = Ti, Zr, Ce) for soot oxidation under NOx/O2. Journal of Catalysis, 250, 75–84. DOI: 10.1016/j.jcat.2007.05.015.

    CAS  Google Scholar 

  • Atribak, I., Bueno-López, A., & García-García, A. (2008a). Thermally stable ceria-zirconia catalysts for soot oxidation by O2. Catalysis Communications, 9, 250–255. DOI: 10.1016/j.catcom.2007.05.047.

    CAS  Google Scholar 

  • Atribak, I., Bueno-López, A., & García-García, A. (2008b). Combined removal of diesel soot particulates and NOx over CeO2-ZrO2 mixed oxides. Journal of Catalysis, 259, 123–132. DOI: 10.1016/j.jcat.2008.07.016.

    CAS  Google Scholar 

  • Atribak, I., Azambre, B., Bueno López, A., & García-García, A. (2009). Effect of NOx adsorption/desorption over ceriazirconia catalysts on the catalytic combustion of model soot. Applied Catalysis B: Environmental, 92, 126–137. DOI: 10.1016/j.apcatb.2009.07.015.

    CAS  Google Scholar 

  • Białobok, B., Trawczyński, J., Rzadki, T., Miśta, W., & Zawadzki, M. (2007). Catalytic combustion of soot over alkali doped SrTiO3. Catalysis Today, 119, 278–285. DOI: 10.1016/j.cattod.2006.08.024.

    Google Scholar 

  • Bueno-López, A., Krishna, K., Makkee, M., & Moulijn, J. A. (2005). Enhanced soot oxidation by lattice oxygen via La3+-doped CeO2. Journal of Catalysis, 230, 237–248. DOI: 10.1016/j.jcat.2004.11.027.

    Google Scholar 

  • Castoldi, L., Matarrese, R., Lietti, L., & Forzatti, P. (2006). Simultaneous removal of NOx and soot on Pt-Ba/Al2O3 NSR catalysts. Applied Catalysis B: Environmental, 64, 25–34. DOI: 10.1016/j.apcatb.2005.10.015.

    CAS  Google Scholar 

  • Cousin, R., Capelle, S., Abi-Aad, E., Courcot, D., & Aboukaïs, A. (2007). Copper-vanadium-cerium oxide catalysts for carbon black oxidation. Applied Catalysis B: Environmental, 70, 247–253. DOI: 10.1016/j.apcatb.2006.01.019.

    CAS  Google Scholar 

  • de Sousa Filho, P. C., Gomes, L. F., de Oliveira, K. T., Neri, C. R., & Serra, O. A. (2009). Amphiphilic cerium(III) β-diketonate as a catalyst for reducing diesel/biodiesel soot emissions. Applied Catalysis A: General, 360, 210–217. DOI: 10.1016/j.apcata.2009.03.024.

    Google Scholar 

  • Fino, D., Fino, P., Saracco, G., & Specchia, V. (2003a). Studies on kinetics and reactions mechanism of La2−x KxCu1−y VyO4 layered perovskites for the combined removal of diesel particulate and NOx. Applied Catalysis B: Environmental, 43, 243–259. DOI: 10.1016/s0926-3373(02)00311-9.

    CAS  Google Scholar 

  • Fino, D., Russo, N., Saracco, G., & Specchia, V. (2003b). The role of suprafacial oxygen in some perovskites for the catalytic combustion of soot. Journal of Catalysis, 217, 367–375. DOI: 10.1016/s0021-9517(03)00143-x.

    CAS  Google Scholar 

  • Fino, D., & Specchia, V. (2004). Compositional and structural optimal design of a nanostructured diesel-soot combustion catalyst for a fast-regenerating trap. Chemical Engineering Science, 59, 4825–4831. DOI: 10.1016/j.ces.2004.07.012.

    CAS  Google Scholar 

  • Fino, D., Russo, N., Cauda, E., Saracco, G., & Specchia, V. (2006a). La-Li-Cr perovskite catalysts for diesel particulate combustion. Catalysis Today, 114, 31–39. DOI: 10.1016/j.cattod.2006.02.007.

    CAS  Google Scholar 

  • Fino, D., Russo, N., Saracco, G., & Specchia, V. (2006b). Catalytic removal of NOx and diesel soot over nanostructured spinel-type oxides. Journal of Catalysis, 242, 38–47. DOI: 10.1016/j.jcat.2006.05.023.

    CAS  Google Scholar 

  • Fino, D., & Specchia, V. (2008). Open issues in oxidative catalysis for diesel particulate abatement. Powder Technology, 180, 64–73. DOI: 10.1016/j.powtec.2007.03.021.

    CAS  Google Scholar 

  • Gallagher, J. T., & Harker, H. (1964). Reaction of carbon with oxidizing gases: Catalysis by compounds of iron, cobalt and nickel. Carbon, 2, 163–174. DOI: 10.1016/0008-6223(64)90057-0.

    CAS  Google Scholar 

  • Gandhi, H. S., Graham, G. W., & McCabe, R. W. (2003). Automotive exhaust catalysis. Journal of Catalysis, 216, 433–442. DOI: 10.1016/s0021-9517(02)00067-2.

    CAS  Google Scholar 

  • Gross, M. S., Ulla, M. A., & Querini, C. A. (2009). Catalytic oxidation of diesel soot: New characterization and kinetic evidence related to the reaction mechanism on K/CeO2 catalyst. Applied Catalysis A: General, 360, 81–88. DOI: 10.1016/j.apcata.2009.03.011.

    CAS  Google Scholar 

  • Gross, M. S., Ulla, M. A., & Querini, C. A. (2012). Diesel particulate matter combustion with CeO2 as catalyst. Part I: System characterization and reaction mechanism. Journal of Molecular Catalysis A: Chemical, 352, 86–94. DOI: 10.1016/j.molcata.2011.10.018.

    CAS  Google Scholar 

  • Guillén-Hurtado, N., García-García, A., & Bueno-López, A. (2013). Isotopic study of ceria-catalyzed soot oxidation in the presence of NOx. Journal of Catalysis, 299, 181–187. DOI: 10.1016/j.jcat.2012.11.026.

    Google Scholar 

  • Harrison, P. G., Ball, I. K., Daniell, W., Lukinskas, P., Céspedes, M., Miró, E. E., & Ulla, M. A. (2003). Cobalt catalysts for the oxidation of diesel soot particulate. Chemical Engineering Journal, 95, 47–55. DOI: 10.1016/s1385-8947(03)00077-9.

    CAS  Google Scholar 

  • Hirano, T., Tosho, T., Watanabe, T., & Akiyama, T. (2009). Self-propagating high-temperature synthesis with post-heat treatment of La1−x SrxFeO3 (x = 0–1) perovskite as catalyst for soot combustion. Journal of Alloys and Compounds, 470, 245–249. DOI: 10.1016/j.jallcom.2008.02.038.

    CAS  Google Scholar 

  • Hong, S. S., Yang J. S., & Lee, G. D. (1999). Catalytic combustion of carbon particulates over perovskite-type oxides. Reaction Kinetics and Catalysis Letters, 66, 305–310. DOI: 10.1007/bf02475805.

    CAS  Google Scholar 

  • Hong, S. S., & Lee, G. D. (2006). Catalytic removal of diesel soot particulates over LaMnO3 perovskite-type oxides. Studies in Surface Science and Catalysis, 159, 261–264. DOI: 10.1016/s0167-2991(06)81583-1.

    CAS  Google Scholar 

  • Jeguirim, M., Tschamber, V., & Ehrburger, P. (2007). Catalytic effect of platinum on the kinetics of carbon oxidation by NO2 and O2. Applied Catalysis B: Environmental, 76, 235–240. DOI: 10.1016/j.apcatb.2007.05.029.

    CAS  Google Scholar 

  • Jelles, S. J., Neeft, J. P. A., van Setten, B. A. A. L., Makkee, M., & Moulijn, J. A. (1998a). Improved soot oxidation by fuel additives and molten salt catalysts. Studies in Surface Science and Catalysis, 116, 621–623. DOI: 10.1016/s0167-2991(98)80917-8.

    CAS  Google Scholar 

  • Jelles, S. J., van Setten, B. A. A. L., Makkee, M., & Moulijn, J. A. (1998b). Supported liquid phase catalysts: A new approach for catalytic oxidation in diesel exhaust particulate emission control. Studies in Surface Science and Catalysis, 116, 667–674. DOI: 10.1016/s0167-2991(98)80922-1.

    CAS  Google Scholar 

  • Jelles, S. J., van Setten, B. A. A. L., Makkee, M., & Moulijn, J. A. (1999a). Molten salts as promising catalysts for oxidation of diesel soot: importance of experimental conditions in testing procedures. Applied Catalysis B: Environmental, 21, 35–49. DOI: 10.1016/s0926-3373(99)00011-9.

    CAS  Google Scholar 

  • Jelles, S. J., Krul, R. R., Makkee, M., & Moulijn, J. A. (1999b). The influence of NOx on the oxidation of metal activated diesel soot. Catalysis Today, 53, 623–630. DOI: 10.1016/s0920-5861(99)00150-9.

    CAS  Google Scholar 

  • Kašpar, J., Fornasiero, P., & Graziani, M. (1999). Use of CeO2-based oxides in the three-way catalysis. Catalysis Today, 50, 285–298. DOI: 10.1016/s0920-5861(98)00510-0.

    Google Scholar 

  • Katta, L., Sudarsanam, P., Thrimurthulu, G., & Reddy, B. M. (2010). Doped nanosized ceria solid solutions for low temperature soot oxidation: Zirconium versus lanthanum promoters. Applied Catalysis B: Environmental, 101, 101–108. DOI: 10.1016/j.apcatb.2010.09.012.

    CAS  Google Scholar 

  • Kayama, T., Yamazaki, K., & Shinjoh, H. (2010). Nanostructured ceria-silver synthesized in a one-pot redox reaction catalyzes carbon oxidation. Journal of the American Chemical Society, 132, 13154–13155. DOI: 10.1021/ja105403x.

    CAS  Google Scholar 

  • Kimura, R., Elangovan, S. P., Ogura, M., Ushiyama, H., & Okubo, T. (2011). Alkali carbonate stabilized on aluminosilicate via solid ion exchange as a catalyst for diesel soot combustion. The Journal of Physical Chemistry C, 115, 14892–14898. DOI: 10.1021/jp2034664.

    CAS  Google Scholar 

  • Klein, J., Fechete, I., Bresset, V., Garin, F., & Tschamber, V. (2012). Effect of carbon black combustion on NOx trap catalyst performances. Catalysis Today, 189, 60–64. DOI: 10.1016/j.cattod.2012.02.060.

    CAS  Google Scholar 

  • Klein, J., Wu, D. L., Tschamber, V., Fechete, I., & Garin, F. (2013). Carbon-NSR catalyst interaction: Impact on catalyst structure and NOx storage efficiency. Applied Catalysis B: Environmental, 132–133, 527–534. DOI: 10.1016/j.apcatb.2012.12.019.

    Google Scholar 

  • Krishna, K., & Makkee, M. (2006). Soot oxidation over NOx storage catalysts: Activity and deactivation. Catalysis Today, 114, 48–56. DOI: 10.1016/j.cattod.2006.02.009.

    CAS  Google Scholar 

  • Krishna, K., Bueno-López, A., Makkee, M., & Moulijn, J. A. (2007a). Potential rare-earth modified CeO2 catalysts for soot oxidation part II: Characterisation and catalytic activity with NO + O2. Applied Catalysis B: Environmental, 75, 201–209. DOI: 10.1016/j.apcatb.2007.04.007.

    CAS  Google Scholar 

  • Krishna, K., Bueno-López, A., Makkee, M., & Moulijn, J. A. (2007b). Potential rare earth modified CeO2 catalysts for soot oxidation: I. Characterisation and catalytic activity with O2. Applied Catalysis B: Environmental, 75, 189–200. DOI: 10.1016/j.apcatb.2007.04.010.

    CAS  Google Scholar 

  • Krishna, K., Bueno-López, A., Makkee, M., & Moulijn, J. A. (2007c). Potential rare-earth modified CeO2 catalysts for soot oxidation. Part III. Effect of dopant loading and calcination temperature on catalytic activity with O2 and NO + O2. Applied Catalysis B: Environmental, 75, 210–220. DOI: 10.1016/j.apcatb.2007.04.009.

    CAS  Google Scholar 

  • Kureti, S., Weisweiler, W., & Hizbullah, K. (2003). Simultaneous conversion of nitrogen oxides and soot into nitrogen and carbon dioxide over iron containing oxide catalysts in diesel exhaust gas. Applied Catalysis B: Environmental, 43, 281–291. DOI: 10.1016/s0926-3373(02)00325-9.

    CAS  Google Scholar 

  • Kustov, A. L., Ricciardi, F., & Makkee, M. (2009). NOx storage and high temperature soot oxidation on Pt-Sr/ZrO2 catalyst. Topics in Catalysis, 52, 2058–2062. DOI 10.1007/s11244-009-9394-y.

    CAS  Google Scholar 

  • Lahaye, J., Boehm, S., Chambrion, Ph., & Ehrburger, P. (1996). Influence of cerium oxide on the formation and oxidation of soot. Combustion and Flame, 104, 199–207. DOI: 10.1016/0010-2180(95)00176-x.

    CAS  Google Scholar 

  • Liang, Q., Wu, X. D., Weng, D., & Lu, Z. X. (2008). Selective oxidation of soot over Cu doped ceria/ceria-zirconia catalysts. Catalysis Communications, 9, 202–206. DOI: 10.1016/j.catcom.2007.06.007.

    CAS  Google Scholar 

  • Liang, Q., Wu, X. D., Weng, D., & Xu, H. B. (2008). Oxygen activation on Cu/Mn-Ce mixed oxides and the role in diesel soot oxidation. Catalysis Today, 139, 113–118. DOI: 10.1016/j.cattod.2008.08.013.

    CAS  Google Scholar 

  • Lin, H., Li, Y. J., Shangguan, W. F., & Huang, Z. (2009). Soot oxidation and NOx reduction over BaAl2O4 catalyst. Combustion and Flame, 156, 2063–2070. DOI: 10.1016/j.combustflame.2009.08.006.

    CAS  Google Scholar 

  • Liu, S. T., Obuchi, A., Oi-Uchisawa, J., Nanba, T., & Kushiyama, S. (2001). Synergistic catalysis of carbon black oxidation by Pt with MoO3 or V2O5. Applied Catalysis B: Environmental, 30, 259–265. DOI: 10.1016/s0926-3373(00)00238-1.

    CAS  Google Scholar 

  • Liu, J., Zhao, Z., Xu, C. M., Duan, A. J., Zhu, L., & Wang, X. Z. (2006). The structures of VOx/MOx and alkali-VOx/MOx catalysts and their catalytic performances for soot combustion. Catalysis Today, 118, 315–322. DOI: 10.1016/j.cattod.2006.07.015.

    CAS  Google Scholar 

  • Liu, J., Zhao, Z., Xu, C. M., & Duan, A. J. (2008). Simultaneous removal of NOx and diesel soot over nanometer Ln-Na-Cu-O perovskite-like complex oxide catalysts. Applied Catalysis B: Environmental, 78, 61–72. DOI: 10.1016/j.apcatb.2007.09.001.

    CAS  Google Scholar 

  • Liu, J., Zhao, Z., Chen, Y. S., Xu, C. M., Duan, A. J., & Jiang, G. Y. (2011). Different valent ions-doped cerium oxides and their catalytic performances for soot oxidation. Catalysis Today, 175, 117–123. DOI: 10.1016/j.cattod.2011.05.023.

    CAS  Google Scholar 

  • Liu, S., Wu, X. D., Weng, D., & Ran, R. (2012). NOx-assisted soot oxidation on Pt-Mg/Al2O3 catalysts: Magnesium precursor, Pt particle size, and Pt-Mg interaction. Industrial & Engineering Chemistry Research, 51, 2271–2279. DOI: 10.1021/ie202239c.

    Google Scholar 

  • López-Suárez, F. E., Bueno-López, A., Illán-Gómez, M. J., Adamski, A., Ura, B., & Trawczynski, J. (2008). Copper catalysts for soot oxidation: Alumina versus perovskite supports. Environmental Science & Technology, 42, 7670–7675. DOI: 10.1021/es8009293.

    Google Scholar 

  • López-Suárez, F. E., Bueno-López A., Illán-Gómez, M. J., Ura, B., & Trawczynski, J. (2009). Potassium stability in soot combustion perovskite catalysts. Topics in Catalysis, 52, 2097–2100. DOI: 10.1007/s11244-009-9385-z.

    Google Scholar 

  • Machida, M., Murata, Y., Kishikawa, K., Zhang, D. J., & Ikeue, K. (2008). On the reasons for high activity of CeO2 catalyst for soot oxidation. Chemistry of Materials, 20, 4489–4494. DOI: 10.1021/cm800832w.

    CAS  Google Scholar 

  • Makkee, M., Krijnsen, H. C., Bertin, S. S., Calis, H. P. A., van den Bleek, C. M., & Moulijn, J. A. (2002). Bench-scale demonstration of an integrated deSoot-deNOx system. Catalysis Today, 75, 459–464. DOI: 10.1016/s0920-5861(02)00096-2.

    CAS  Google Scholar 

  • Maricq, M. M. (2007). Chemical characterization of particulate emissions from diesel engines: A review. Journal of Aerosol Science, 38, 1079–1118. DOI: 10.1016/j.jaerosci.2007.08.001.

    CAS  Google Scholar 

  • Matarrese, R., Castoldi, L., Lietti, L., & Forzatti, P. (2009). Simultaneous removal of NOx and soot over Pt-Ba/Al2O3 and Pt-K/Al2O3 DPNR catalysts. Topics in Catalysis, 52, 2041–2046. DOI: 10.1007/s11244-009-9400-4.

    CAS  Google Scholar 

  • McKee, D. W. (1983). Mechanisms of the alkali metal catalysed gasification of carbon. Fuel, 62, 170–175. DOI: 10.1016/0016-2361(83)90192-8.

    CAS  Google Scholar 

  • Milt, V. G., Querini, C. A., Miró, E. E., & Ulla, M. A. (2003). Abatement of diesel exhaust pollutants: NOx adsorption on Co,Ba,K/CeO2 catalysts. Journal of Catalysis, 220, 424–432. DOI: 10.1016/s0021-9517(03)00285-9.

    CAS  Google Scholar 

  • Montanaro, L. (1999). Durability of ceramic filters in the presence of some diesel soot oxidation additives. Ceramics International, 25, 437–445. DOI: 10.1016/s0272-8842(98)00051-0.

    CAS  Google Scholar 

  • Moulijn, J. A., Cerfontain, M. B., & Kapteijn, F. (1984). Mechanism of the potassium catalysed gasification of carbon in CO2. Fuel, 63, 1043–1047. DOI: 10.1016/0016-2361(84)90185-6.

    CAS  Google Scholar 

  • Mul, G., Neeft, J. P. A., Kapteijn, F., Makkee, M., & Moulijn, J. A. (1995). Soot oxidation catalyzed by a Cu/K/Mo/Cl catalyst: evaluation of the chemistry and performance of the catalyst. Applied Catalysis B: Environmental, 6, 339–352. DOI: 10.1016/0926-3373(95)00027-5.

    CAS  Google Scholar 

  • Mul, G., Kapteijn, F., & Moulijn, J. A. (1996). Catalytic oxidation of model soot by metal chlorides. Applied Catalysis B: Environmental, 12, 33–47. DOI: 10.1016/s0926-3373(96)00065-3.

    Google Scholar 

  • Neeft, J. P. A., Makkee, M., & Moulijn, J. A. (1996a). Diesel particulate emission control. Fuel Processing Technology, 47, 1–69. DOI: 10.1016/0378-3820(96)01002-8.

    CAS  Google Scholar 

  • Neeft, J. P. A., Makkee, M., & Moulijn, J. A. (1996b). Catalysts for the oxidation of soot from diesel exhaust gases. I. An exploratory study. Applied Catalysis B: Environmental, 8, 57–78. DOI: 10.1016/0926-3373(95)00057-7.

    CAS  Google Scholar 

  • Neri, G., Bonaccorsi, L., Donato, A., Milone, C., Musolino, M. G., & Visco, A. M. (1997). Catalytic combustion of diesel soot over metal oxide catalysts. Applied Catalysis B: Environmental, 11, 217–231. DOI: 10.1016/s0926-3373(96)00045-8.

    CAS  Google Scholar 

  • Neri, G., Rizzo, G., Galvagno, S., Donato, A., Musolino, M. G., & Pietropaolo, R. (2003). K- and Cs-FeV/Al2O3 soot combustion catalysts for diesel exhaust treatment. Applied Catalysis B: Environmental, 42, 381–391. DOI: 10.1016/s0926-3373(02)00271-0.

    CAS  Google Scholar 

  • Oi-Uchisawa, J., Obuchi, A., Zhao, Z., & Kushiyama, S. (1998). Carbon oxidation with platinum supported catalysts. Applied Catalysis B: Environmental, 18, L183–L187. DOI: 10.1016/s0926-3373(98)00046-0.

    CAS  Google Scholar 

  • Oi-Uchisawa, J., Obuchi, A., Enomoto, R., Liu, S. T., Nanba, T., & Kushiyama, S. (2000). Catalytic performance of Pt supported on various metal oxides in the oxidation of carbon black. Applied Catalysis B: Environmental, 26, 17–24. DOI: 10.1016/s0926-3373(99)00142-3.

    CAS  Google Scholar 

  • Oi-Uchisawa, J., Wang, S. D., Nanba, T., Ohi, A., & Obuchi, A. (2003). Improvement of Pt catalyst for soot oxidation using mixed oxide as a support. Applied Catalysis B: Environmental, 44, 207–215. DOI: 10.1016/s0926-3373(03)00055-9.

    CAS  Google Scholar 

  • Peng, X. S., Lin, H., Shangguan, W. F., & Huang, Z. (2007). A highly efficient and porous catalyst for simultaneous removal of NOx and diesel soot. Catalysis Communications, 8, 157–161. DOI: 10.1016/j.catcom.2006.04.015.

    CAS  Google Scholar 

  • Peralta, M. A., Milt, V. G., Cornaglia, L. M., & Querini, C. A. (2006). Stability of Ba,K/CeO2 catalyst during diesel soot combustion. Effect of temperature, water, and sulfur dioxide. Journal of Catalysis, 242, 118–130. DOI: 10.1016/j.jcat.2006.05.025.

    CAS  Google Scholar 

  • Pieta, I. S., García-Diéguez, M., Herrera, C., Larrubia, M. A., & Alemany, L. J. (2010). In situ DRIFT-TRM study of simultaneous NOx and soot removal over Pt-Ba and Pt-K NSR catalysts. Journal of Catalysis, 270, 256–267. DOI: 10.1016/j.jcat.2010.01.003.

    CAS  Google Scholar 

  • Reddy, B. M., Bharali, P., Thrimurthulu, G., Saikia, P., Katta, L., & Park, S. E. (2008). Catalytic efficiency of ceria-zirconia and ceria-hafnia nanocomposite oxides for soot oxidation. Catalysis Letters, 123, 327–333. DOI: 10.1007/s10562-008-9427-3.

    CAS  Google Scholar 

  • Russo, N., Fino, D., Saracco, G., & Specchia, V. (2005). Studies on the redox properties of chromite perovskite catalysts for soot combustion. Journal of Catalysis, 229, 459–469. DOI: 10.1016/j.jcat.2004.11.025.

    CAS  Google Scholar 

  • Russo, N., Fino, D., Saracco, G., & Specchia, V. (2008a). Promotion effect of Au on perovskite catalysts for the regeneration of diesel particulate filters. Catalysis Today, 137, 306–311. DOI: 10.1016/j.cattod.2007.09.010.

    CAS  Google Scholar 

  • Russo, N., Furfori, S., Fino, D., Saracco, G., & Specchia, V. (2008b). Lanthanum cobaltite catalysts for diesel soot combustion. Applied Catalysis B: Environmental, 83, 85–95. DOI: 10.1016/j.apcatb.2008.02.006.

    CAS  Google Scholar 

  • Sánchez Escribano, V., Fernández López, E., Gallardo-Amores, J. M., del Hoyo Martínez, C., Pistarino, C., Panizza, M., Resini, C., & Busca, G. (2008). A study of a ceria-zirconiasupported manganese oxide catalyst for combustion of Diesel soot particles. Combustion and Flame, 153, 97–104. DOI: 10.1016/j.combustflame.2007.11.010.

    Google Scholar 

  • Setiabudi, A., van Setten, B. A. A. L., Makkee, M., & Moulijn, J. A. (2002). The influence of NOx on soot oxidation rate: molten salt versus platinum. Applied Catalysis B: Environmental, 35, 159–166. DOI: 10.1016/s0926-3373(01)00251-x.

    CAS  Google Scholar 

  • Setiabudi, A., Chen, J. L., Mul, G., Makkee, M., & Moulijn, J. A. (2004). CeO2 catalysed soot oxidation: The role of active oxygen to accelerate the oxidation conversion. Applied Catalysis B: Environmental, 51, 9–19. DOI: 10.1016/j.apcatb.2004.01.005.

    CAS  Google Scholar 

  • Shangguan, W. F., Teraoka, Y., & Kagawa, S. (1996). Simultaneous catalytic removal of NOx and diesel soot particulates over ternary AB2O4 spinel-type oxides. Applied Catalysis B: Environmental, 8, 217–227. DOI: 10.1016/0926-3373(95)00070-4.

    CAS  Google Scholar 

  • Shangguan, W. F., Teraoka, Y., & Kagawa, S. (1998). Promotion effect of potassium on the catalytic property of CuFe2O4 for the simultaneous removal of NOx and diesel soot particulate. Applied Catalysis B: Environmental, 16, 149–154. DOI: 10.1016/s0926-3373(97)00068-4.

    CAS  Google Scholar 

  • Teraoka, Y., Nakano, K., Kagawa, S., & Shangguan, W. F. (1995). Simultaneous removal of nitrogen oxides and diesel soot particulates catalyzed by perovskite-type oxides. Applied Catalysis B: Environmental, 5, L181–L185. DOI: 10.1016/0926-3373(94)00059-x.

    CAS  Google Scholar 

  • Teraoka, Y., Nakano, K., Shangguan, W. F., & Kagawa, S. (1996). Simultaneous catalytic removal of nitrogen oxides and diesel soot particulate over perovskite-related oxides. Catalysis Today, 27, 107–113. DOI: 10.1016/0920-5861(95)00177-8.

    CAS  Google Scholar 

  • Teraoka, Y., Kanada, K., & Kagawa, S. (2001). Synthesis of La-K-Mn-O perovskite-type oxides and their catalytic property for simultaneous removal of NOx and diesel soot particulates. Applied Catalysis B: Environmental, 34, 73–78. DOI: 10.1016/s0926-3373(01)00202-8.

    CAS  Google Scholar 

  • Tikhomirov, K., Kröcher, O., Elsener, M., & Wokaun, A. (2006). MnOx-CeO2 mixed oxides for the low-temperature oxidation of diesel soot. Applied Catalysis B: Environmental, 64, 72–78. DOI: 10.1016/j.apcatb.2005.11.003.

    CAS  Google Scholar 

  • Twigg, M. V. (2006). Roles of catalytic oxidation in control of vehicle exhaust emissions. Catalysis Today, 117, 407–418. DOI: 10.1016/j.cattod.2006.06.044.

    CAS  Google Scholar 

  • Twigg, M. V. (2007). Progress and future challenges in controlling automotive exhaust gas emissions. Applied Catalysis B: Environmental, 70, 2–15. DOI: 10.1016/j.apcatb.2006.02.029.

    CAS  Google Scholar 

  • Ura, B., Trawczyński, J., Kotarba, A., Bieniasz, W., Illán-Gómez M. J., Bueno-López, A., & López-Suárez, F. E. (2011). Effect of potassium addition on catalytic activity of SrTiO3 catalyst for diesel soot combustion. Applied Catalysis B: Environmental, 101, 169–175. DOI: 10.1016/j.apcatb.2010.09.018.

    CAS  Google Scholar 

  • Van Craenenbroeck, J., Andreeva, D., Tabakova, T., Van Werde, K., Mullens, J., & Verpoort, F. (2002). Spectroscopic analysis of Au-V-based catalysts and their activity in the catalytic removal of diesel soot particulates. Journal of Catalysis, 209, 515–527. DOI: 10.1006/jcat.2002.3649.

    Google Scholar 

  • van Setten, B. A. A. L., van Dijk, R., Jelles, S. J., Makkee, M., & Moulijn, J. A. (1999a). The potential of supported molten salts in the removal of soot from diesel exhaust gas. Applied Catalysis B: Environmental, 21, 51–61. DOI: 10.1016/s0926-3373(99)00008-9.

    Google Scholar 

  • van Setten, B. A. A. L., Bremmer, J., Jelles, S. J., Makkee, M., & Moulijn, J. A. (1999b). Ceramic foam as a potential molten salt oxidation catalyst support in the removal of soot from diesel exhaust gas. Catalysis Today, 53, 613–621. DOI: 10.1016/s0920-5861(99)00149-2.

    Google Scholar 

  • van Setten, B. A. A. L., Schouten, J. M., Makkee, M., & Moulijn, J. A. (2000). Realistic contact for soot with an oxidation catalyst for laboratory studies. Applied Catalysis B: Environmental, 28, 253–257. DOI: 10.1016/s0926-3373(00)00182-x.

    Google Scholar 

  • van Setten, B. A. A. L., Makkee, M., & Moulijn, J. A. (2001a). Science and technology of catalytic diesel particulate filters. Catalysis Reviews: Science and Engineering, 43, 489–564. DOI: 10.1081/cr-120001810.

    Google Scholar 

  • van Setten, B. A. A. L., van Gulijk, C., Makkee, M., & Moulijn, J. A. (2001b). Molten salts are promising catalysts. How to apply in practice? Topics in Catalysis, 16–17, 275–278. DOI: 10.1023/a:1016644612038.

    Google Scholar 

  • van Setten, B. A. A. L., Spitters, C. G. M., Bremmer, J., Mulders, A. M. M., Makkee, M., & Moulijn, J. A. (2003). Stability of catalytic foam diesel-soot filters based on Cs2O, MoO3, and Cs2 SO4 molten-salt catalysts. Applied Catalysis B: Environmental, 42, 337–347. DOI: 10.1016/s0926-3373(02)00265-5.

    Google Scholar 

  • Villani, K., Kirschhock, C. E. A., Liang, D. D., Van Tendeloo, G., & Martens, J. A. (2006). Catalytic carbon oxidation over ruthenium-based catalysts. Angewandte Chemie International Edition, 45, 3106–3109. DOI: 10.1002/anie.200503799.

    CAS  Google Scholar 

  • Wang, H., Zhao, Z., Liang, P., Xu, C. M., Duan, A. J., Jiang, G. Y., Xu, J., & Liu, J. (2008). Highly active La1−x KxCoO3 perovskite-type complex oxide catalysts for the simultaneous removal of diesel soot and nitrogen oxides under loose contact conditions. Catalysis Letters, 124, 91–99. DOI: 10.1007/s10562-008-9429-1.

    CAS  Google Scholar 

  • Wei, Y. C., Liu, J., Zhao, Z., Xu, C. M., Duan, A. J., & Jiang, G. Y. (2013). Structural and synergistic effects of threedimensionally ordered macroporous Ce0.8Zr0.2O2-supported Pt nanoparticles on the catalytic performance for soot combustion. Applied Catalysis A: General, 453, 250–261. DOI: 10.1016/j.apcata.2012.12.013.

    CAS  Google Scholar 

  • Wu, X. D., Liang, Q., Weng, D., & Lu, Z. X. (2007). The catalytic activity of CuO-CeO2 mixed oxides for diesel soot oxidation with a NO/O2 mixture. Catalysis Communications, 8, 2110–2114. DOI: 10.1016/j.catcom.2007.04.023.

    CAS  Google Scholar 

  • Xu, J. F., Liu, J., Zhao, Z., Zheng, J. X., Zhang, G. Z., Duan, A. J., & Jiang, G. Y. (2010). Three-dimensionally ordered macroporous LaCoxFe1−x O3 perovskite-type complex oxide catalysts for diesel soot combustion. Catalysis Today, 153, 136–142. DOI: 10.1016/j.cattod.2010.01.063.

    CAS  Google Scholar 

  • Yao, W. S., Wang, R. J., & Yang, X. X. (2009). LaCo1−xPdxO3 perovskite-type oxides: Synthesis, characterization and simultaneous removal of NOx and diesel soot. Catalysis Letters, 130, 613–621. DOI: 10.1007/s10562-009-9905-2.

    CAS  Google Scholar 

  • Zawadzki, M., Staszak, W., López-Suárez, F. E., Illán-Gómez, M. J., & Bueno-López, A. (2009). Preparation, characterisation and catalytic performance for soot oxidation of coppercontaining ZnAl2O4 spinels. Applied Catalysis A: General, 371, 92–98. DOI: 10.1016/j.apcata.2009.09.035.

    CAS  Google Scholar 

  • Zawadzki, M., Walerczyk, W., López-Suárez, F. E., Illán-Gómez, M. J., & Bueno-López, A. (2011). CoAl2O4 spinel catalyst for soot combustion with NOx/O2. Catalysis Communications, 12, 1238–1241. DOI: 10.1016/j.catcom.2011.04.021.

    CAS  Google Scholar 

  • Zhang, G. Z., Zhao, Z., Liu, J., Xu, J. F., Jing, Y. N., Duan, A. J., & Jiang, G. Y. (2010a). Macroporous perovskite-type complex oxide catalysts of La1−x KxCo1−y FeyO3 for diesel soot combustion. Journal of Rare Earths, 27, 955–960. DOI: 10.1016/s1002-0721(08)60369-5.

    Google Scholar 

  • Zhang, G. Z., Zhao, Z., Liu, J., Jiang, G. Y., Duan, A. J., Zheng, J. X., Chen, S. L., & Zhou, R. X. (2010b). Three dimensionally ordered macroporous Ce1−x ZrxO2 solid solutions for diesel soot combustion. Chemical Communications, 46, 457–459. DOI: 10.1039/b915027g.

    CAS  Google Scholar 

  • Zhang-Steenwinkel, Y., van der Zande, L. M., Castricum, H. L., Bliek, A., van den Brink, R. W., & Elzinga, G. D. (2005). Microwave-assisted in-situ regeneration of a perovskite coated diesel soot filter. Chemical Engineering Science, 60, 797–804. DOI: 10.1016/j.ces.2004.09.042.

    CAS  Google Scholar 

  • Zheng, J. X., Liu, J., Zhao, Z., Xu, J. F., Duan, A. J., & Jiang, G. Y. (2012). The synthesis and catalytic performances of three-dimensionally ordered macroporous perovskite-type LaMn1−x FexO3 complex oxide catalysts with different pore diameters for diesel soot combustion. Catalysis Today, 191, 146–153. DOI: 10.1016/j.cattod.2011.12.013.

    CAS  Google Scholar 

  • Zhu, L., Yu, J. J., & Wang, X. Z. (2007). Oxidation treatment of diesel soot particulate on CexZr1−x O2. Journal of Hazardous Materials, 140, 205–210. DOI: 10.1016/j.jhazmat.2006.06.055.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Agustín Bueno-López.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hernández-Giménez, A.M., Castelló, D.L. & Bueno-López, A. Diesel soot combustion catalysts: review of active phases. Chem. Pap. 68, 1154–1168 (2014). https://doi.org/10.2478/s11696-013-0469-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11696-013-0469-7

Keywords

Navigation