Skip to main content

Advertisement

Log in

Anoxic granulated biomass and its storage

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

Laboratory experiments involving shutdown and repeated start-up of a denitrification USB reactor with granulated anoxic biomass were conducted in order to find suitable conditions for a safe storage period of the biomass. Anoxic granulated biomass stored under anaerobic conditions for a half year period at 6°C and for a half month period at 18–20°C retained its activity and granular morphology. Storage of anoxic granules under anaerobic conditions for a half year period at 18–20°C led to the loss of the biomass original activity and a significant portion of the granules disintegrated. Anoxic granulated biomass stored for a one and a half month period under endogenous anoxic conditions at 18–20°C retained its activity and granular morphology. A two month storage under endogenous anoxic conditions at 18–20°C was too long and the shutdown of the reactor had to be followed by repeated anoxic granulation. Minimum loading of the USB reactor with N-NO3 to maintain endogenous anoxic conditions in the sludge bed was in the range of 0.06–0.1 kg of N-NO3 per m3 per day. Restart of the USB reactor can be accelerated by an addition of anaerobic granulated biomass.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • APHA (1998). Standard methods for the examination of water and wastewater (20th ed.). Washington, DC, USA: American Public Health Association.

    Google Scholar 

  • Babjaková, L., Jonatová, I., Imreová, Z., & Drtil, M. (2013). The influence of volume and surface loading of denitrification reactor with granulated biomass on the denitrification degree of wastewater from sewage treatment plant. Chemické Listy/Chemical Letters, 107, 223–227. (in Slovak)

    Google Scholar 

  • Bhatti, Z. I., Sumida, K., Rouse, J. D., & Furukawa, K. (2001). Characterization of denitrifying granular sludge treating soft groundwater in upflow sludge-blanket reactor. Journal of Bioscience and Bioengineering, 91, 373–377. DOI: 10.1016/S1389-1723(01)80154-7.

    CAS  Google Scholar 

  • Borzacconi, L., Ottonello, G., Castelló, E., Pelaez, H., Gazzola, A., & Viñas, M. (1999). Denitrification in a carbon and nitrogen removal system for leachate treatment: Performance of a upflow sludge blanket (USB) reactor. Water Science & Technology, 40(8), 145–151. DOI: 10.1016/s0273-1223(99)00620-4.

    Article  CAS  Google Scholar 

  • Cuervo López, F. M., Martinez, F., Gutiérrez-Rojas, M., Noyola, R. A., & Gómez, J. (1999). Effect of nitrogen loading rate and carbon source on denitrification and sludge settleability in upflow anaerobic sludge blanket (UASB) reactors. Water Science & Technology, 40(8), 123–130. DOI: 10.1016/s0273-1223(99)00617-4.

    Article  Google Scholar 

  • Eiroa, M., Kennes, C., & Veiga, M. C. (2004). Formaldehyde and urea removal in a denitrifying granular sludge blanket reactor. Water Research, 38, 3495–3502. DOI: 10.1016/j.watres.2004.04.055.

    Article  CAS  Google Scholar 

  • Etchebehere, C., Errazquin, M. I., Cabezas, A., Pianzzola, M. J., Mallo, M., Lombardi, P., Ottonello, G., Borzacconi, L., & Muxi, L. (2002). Sludge bed development in denitrifying reactors using different inocula-performance and microbiological aspects. Water Science & Technology, 45(10), 365–370.

    CAS  Google Scholar 

  • Etchebehere, C., Cabezas, A., Dabert, P., & Muxi, L. (2003). Evolution of the bacterial community during granules formation in denitrifying reactors followed by molecular, cultureindependent techniques. Water Science & Technology, 48(6), 75–79.

    CAS  Google Scholar 

  • Franco, A., Roca, E., & Lema, J. M. (2006). Granulation in high-load denitrifying upflow sludge bed (USB) pulsed reactor. Water Research, 40, 871–880. DOI: 10.1016/j.watres.2005.11.044.

    Article  CAS  Google Scholar 

  • Galbová, K., Pagáčová, P., Drtil, M., & Jonatová, I. (2010). Comparison of anoxic granulation in USB reactors with various inocula. Chemical Papers, 64, 132–138. DOI: 10.2478/s11696-009-0119-2.

    Article  Google Scholar 

  • Green, M., Tarre, S., Shnizer, M., Bogdan, B., Armon, R., & Shelef, R. (1994). Groundwater denitrification using an up-flow sludge blanket reactor. Water Research, 28, 631–637. DOI: 10.1016/0043-1354(94)90013-2.

    Article  CAS  Google Scholar 

  • Hulshoff Pol, L. W. (1989). The phenomenon of granulation of anaerobic sludge. Ph.D. thesis, Agricultural University Wageningen, The Netherlands.

    Google Scholar 

  • Imreová, Z., Drtil, M., Babjaková, L., & Pavúk, J. (2013). Anoxic granulated biomass as biocatalyst of drinking water and wastewater denitrification. Chemické Listy/Chemical Letters, 107, 479–485. (in Slovak)

    Google Scholar 

  • Jin, X. B., Wang, F., Liu, G. H., & Yan, N. (2012). A key cultivation technology for denitrifying granular sludge. Process Biochemistry, 47, 1122–1128. DOI: 10.1016/j.procbio.2012.04.001.

    Article  CAS  Google Scholar 

  • Kratochvíl, K., Drtil, M., Hutňan, M., Bilanin, M., Derco, J., & Fargašová, A. (1997). Characteristics of granulated denitrification biomass in USB reactor. Vodní hospodřství/Water Management, 47, 23–26. (in Slovak)

    Google Scholar 

  • Lettinga, G., van Velsen, A. F. M., Hobma, S. W., de Zeeuw, W., & Klapwijk, A. (1980). Use of the upflow sludge blanket (USB) reactor concept for biological wastewater treatment, especially for anaerobic treatment. Biotechnology and Bioengineering, 22, 699–734. DOI: 10.1002/bit.260220402.

    Article  CAS  Google Scholar 

  • Lettinga, G., & Hulshoff Pol, L. W. (1986). Advanced reactor design, operation and economy. Water Science & Technology, 18(12), 99–108.

    CAS  Google Scholar 

  • Lettinga, G., & Hulshoff Pol, L. W. (Eds.) (1990). Anaerobic reactor technology. In International Course on Anaerobic Waste Treatment, June 25–August 3, 1990. IHE Delft, Agricultural University Wageningen.

  • Pagáčová, P., Drtil, M., & Galbová, K. (2009). Granulation of activated sludge in laboratory upflow sludge blanket reactor. Chemical Papers, 63, 125–130. DOI: 10.2478/s11696-008-0092-1.

    Article  Google Scholar 

  • Pagáčová, P., Galbová, K., Drtil, M., & Jonatová, I., (2010). Denitrification in USB reactor with granulated biomass. Bioresource Technology, 101, 150–156. DOI: 10.1016/j.biortech.2009.08.021.

    Article  Google Scholar 

  • Ruiz, G., Jeison, D., & Chamy, R. (2006). Development of denitrifying and methanogenic activities in USB reactors for treatment of wastewater: Effect of COD/N ratio. Process Biochemistry, 41, 1338–1342. DOI: 10.1016/j.procbio.2006.01.007.

    Article  CAS  Google Scholar 

  • Tarre, S., & Green, M. (1994). Precipitation potential as a major factor in the formation of granular sludge in an upflow sludge-blanket reactor for denitrification of drinking water. Applied Microbiology and Biotechnology, 42, 482–486. DOI: 10.1007/bf00902761.

    Article  CAS  Google Scholar 

  • van der Hoek, J. P., & Klapwijk, A. (1987). Nitrate removal from ground water. Water Research, 21, 989–997. DOI: 10.1016/s0043-1354(87)80018-0.

    Article  Google Scholar 

  • van der Hoek, J. P., Latour, P. J. M., & Klapwijk, A. (1987). Denitrification with methanol in the presence of high salt concentrations and at high pH levels. Applied Microbiology and Biotechnology, 27, 199–205. DOI: 10.1007/bf00251945.

    Article  Google Scholar 

  • van der Hoek, J. P., Latour, P. J. M., & Klapwijk, A. (1988a). Effect of hydraulic residence time on microbial sulfide production in an upflow sludge blanket denitrification reactor fed with methanol. Applied Microbiology and Biotechnology, 28, 493–499. DOI: 10.1007/bf00268221.

    Article  Google Scholar 

  • van der Hoek, J. P., van der Ven, P. J. M., & Klapwijk A. (1988b). Combined ion exchange/biological denitrification for nitrate removal from ground water under different process conditions. Water Research, 22, 679–684. DOI: 10.1016/0043-1354(88)90178-9.

    Article  Google Scholar 

  • Wu, W. M., Jain, M. K., Thiele, J. H., & Zeikus, J. G. (1995). Effect of storage on the performance of methanogenic granules. Water Research, 29, 1445–1452. DOI: 10.1016/0043-1354(94)00305-q.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miloslav Drtil.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Drtil, M., Babjakova, L., Imreova, Z. et al. Anoxic granulated biomass and its storage. Chem. Pap. 67, 1577–1584 (2013). https://doi.org/10.2478/s11696-013-0447-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11696-013-0447-0

Keywords

Navigation