Skip to main content

Advertisement

Log in

Comparative study of particle size analysis of hydroxyapatite-based nanomaterials

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

The purpose of this work was to compare hydroxyapatite (HAP) and composites of HAP, HAP with chitosan (CS), and HAP with poly(vinyl pyrrolidone) (PVP), in terms of their particle size and morphology, using different methods, such as Coulter counter analysis, X-ray diffraction (XRD), and transmission electron microscopy (TEM). Although many researchers have studied HAP and CS/HAP and PVP/HAP composites extensively, there is no evidence of a comparative study of their particle sizes. For this reason, different complementary methods have been used so as to provide a more complete image of final product properties — particle size — from the perspective of possible applications. The syntheses of HAP and HAP with polymer nanoparticles were carried out employing a precipitation method. Variation in particle size with synthesis time and influence of the reactants’ concentration on the materials’ preparation were systematically explored. Crystallite size calculated from XRD data revealed nanosized particles of HAP, CS/HAP, and PVP/HAP materials in the range of 2.5–9.2 nm. Coulter counter analysis revealed mean particle sizes of one thousand orders of magnitude larger, confirming that this technique measures agglomerates, not individual particles. In addition, the particles’ morphology and an assessment of their binding mode were completed by TEM measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alatorre-Meda, M., Taboada, P., Hartl, F., Wagner, T., Freis, M., & Rodríguez, J. R. (2011). The influence of chitosan valence on the complexation and transfection of DNA: The weaker the DNA-chitosan binding the higher the transfection efficiency. Colloids and Surfaces B: Biointerfaces, 82, 54–62. DOI:10.1016/j.colsurfb.2010.08.013.

    Article  CAS  Google Scholar 

  • Burg, K. J. L., Porter, S., & Kellam, J. F. (2000). Biomaterial developments for bone tissue engineering. Biomaterials, 21, 2347–2359. DOI: 10.1016/s0142-9612(00)00102-2.

    Article  CAS  Google Scholar 

  • Cai, X., Tong, H., Shen, X. Y., Chen, W. X., Yan, J., & Hu, J. M. (2009). Preparation and characterization of homoge neous chitosan-polylactic acid/hydroxyapatite nanocomposite for bone tissue engineering and evaluation of its mechanical properties. Acta Biomaterialia, 5, 2693–2703. DOI:10.1016/j.actbio.2009.03.005.

    Article  CAS  Google Scholar 

  • Cao, L. Y., Zhang, C. B., & Huang, J. F. (2005). Influence of temperature, [Ca2+], Ca/P ratio and ultrasonic power on the crystallinity and morphology of hydroxyapatite nanoparticles prepared with a novel ultrasonic precipitation method. Materials Letters, 59, 1902–1906. DOI:10.1016/j.matlet.2005.02.007.

    Article  CAS  Google Scholar 

  • Chang, M. C., Ko, C. C., & Douglas, W. H. (2003). Preparation of hydroxyapatite-gelatin nanocomposites. Biomaterials, 24, 2853–2862. DOI: 10.1016/s0142-9612(03)00115-7.

    Article  CAS  Google Scholar 

  • Chen, F., Wang, Z. C., & Lin, C. J. (2002). Preparation and characterization of nano sized hydroxyapatite particles and hydroxyapatite/chitosan nano-composite for use in biomedical materials. Materials Letters, 57, 858–861. DOI: 10.1016/s0167-577x(02)00885-6.

    Article  CAS  Google Scholar 

  • Chen, F., Tang, Q. L., Zhu, Y. J., Wang, K. W., Zhang, M. L., Zhai, W. Y., & Chang, J. (2010). Hydroxyapatite nanorods/poly(vinyl pyrolidone) composite nanofibers, arrays and three-dimensional fabrics: Electrospun preparation and transformation to hydroxyapatite nanostructures. Acta Biomaterialia, 6, 3013–3020. DOI:10.1016/j.actbio.2010.02. 015.

    Article  CAS  Google Scholar 

  • Cheng, X. M., Li, Y. B., Zuo, Y., Zhang, L., Li, J. D., & Wang, H. A. (2009). Properties and in vitro biological evaluation of nano-hydroxyapatite/chitosan membranes for bone guided regeneration. Materials Science and Engineering: C, 29, 29–35. DOI:10.1016/j.msec.2008.05.008.

    Article  CAS  Google Scholar 

  • Cullity, B. D. (1978). Elements of X-ray diffraction. Reading, MA, USA: Addison-Wesley.

    Google Scholar 

  • Dash, A. K., & Cudworth, G. C. (1998). Therapeutic applications of implantable drug delivery systems. Journal of Pharmacological and Toxicological Methods, 40, 1–12. DOI: 10.1016/s1056-8719(98)00027-6.

    Article  CAS  Google Scholar 

  • Di Martino, A., Sittinger, M., & Risbud, M. V. (2005). Chitosan: A versatile biopolymer for orthopaedic tissue-engineering. Biomaterials, 26, 5983–5990. DOI: 10.1016/j.biomaterials. 2005.03.016.

    Article  Google Scholar 

  • Ding, S. J. (2007). Biodegradation behavior of chitosan/calcium phosphate composites. Journal of Non-Crystalline Solids, 353, 2367–2373. DOI:10.1016/j.jnoncrysol.2007.04.020.

    Article  CAS  Google Scholar 

  • Dorozhkin, S. V., & Epple, M. (2002). Biological and medical significance of calcium phosphates. Angewandte Chemie International Edition, 41, 3130–3146. DOI: 10.1002/1521-3773(20020902)41:17〈3130::aid-anie3130〉3.0.co;2-1.

    Article  CAS  Google Scholar 

  • Du, X. W., Chu, Y., Xig, S. X., & Dong, L. H. (2009). Hydrothermal synthesis of calcium hydroxyapatite nanorods in the presence of PVP. Journal of Materials Science, 44, 6273–6279. DOI: 10.1007/s10853-009-3860-6.

    Article  CAS  Google Scholar 

  • Fábián, R., Kotsis, I., & Piltér, Z. (1999). Comparison of properties of fluorapatites prepared by solid state reaction and precipitation. Hungarian Journal of Industrial Chemistry, 27, 259–263.

    Google Scholar 

  • Frake, P., Greenhalgh, D., Grierson, S. M., Hempenstall, J. M., & Rudd, D. R. (1997). Process control and end-point determination of a fluid bed granulation by application of near infra-red spectroscopy. International Journal of Pharmaceutics, 151, 75–80. DOI: 10.1016/s0378-5173(97)04894-1.

    Article  CAS  Google Scholar 

  • Francis Suh, J. K., & Matthew, H. W. T. (2000). Application of chitosan-based polysaccharide biomaterials in cartilage tissue engineering: a review. Biomaterials, 21, 2589–2598. DOI: 10.1016/s0142-9612(00)00126-5.

    Article  CAS  Google Scholar 

  • Gibson, I. R., Best, S. M., & Bonfield, W. (2002). Effect of silicon substitution on the sintering and microstructure of hydroxyapatite. Journal of the American Ceramic Society, 85, 2771–2777. DOI: 10.1111/j.1151-2916.2002.tb00527.x.

    Article  CAS  Google Scholar 

  • Halstensen, M., de Bakker, P., & Esbensen, K. H. (2006). Acoustic chemometric monitoring of an industrial granulation production process—a PAT feasibility study. Chemometrics and Intelligent Laboratory Systems, 84, 88–97. DOI:10.1016/j.chemolab.2006.05.012.

    Article  CAS  Google Scholar 

  • Harker, J. H., Backhurst, J. R., Richardson, J. F., & Coulson, J. M. (1991). Chemical engineering, Volume 2: Particle Technology and Separation Processes (4th ed.). Oxford, UK: Butterworth-Heinemann.

    Google Scholar 

  • Hench, L. L., & Wilson, J. (1993). An introduction to bioceramics. Singapore, Singapore: World Scientific Publishing.

    Book  Google Scholar 

  • Hench, L. L. (1998). Bioceramics. Journal of the American Ceramic Society, 81, 1705–1728. DOI: 10.1111/j.1151-2916.1998.tb02540.x.

    Article  CAS  Google Scholar 

  • Hu, Q. L., Li, B. Q., Wang, M., & Shen, J. C. (2004). Preparation and characterization of biodegradable chitosan/hydroxyapatite nanocomposite rods via in situ hybridization: a potential material as internal fixation of bone fracture. Biomaterials, 25, 779–785. DOI: 10.1016/s0142-9612(03)00582-9.

    Article  CAS  Google Scholar 

  • Hu, X. H., Cunningham, J. C., & Winstead, D. (2008). Study growth kinetics in fluidized bed granulation with at-line FBRM. International Journal of Pharmaceutics, 347, 54–61. DOI:10.1016/j.ijpharm.2007.06.043.

    Article  CAS  Google Scholar 

  • Iafisco, M., Varoni, E., Battistella, E., Pietronave, S., Prat, M., Roveri, N., & Rimondini, L. (2010). The cooperative effect of size and crystallinity degree on the resorption of biomimetic hydroxyapatite for soft tissue augmentation. The International Journal of Artificial Organs, 33, 765–774.

    CAS  Google Scholar 

  • Kandori, K., Fudo, A., & Ishikawa, T. (2000). Adsorption of myoglobin onto various synthetic hydroxyapatite particles. Physical Chemistry Chemical Physics, 2, 2015–2020. DOI: 10.1039/a909396f.

    Article  CAS  Google Scholar 

  • Khor, E., & Lim, L. Y. (2003). Implantable applications of chitin and chitosan. Biomaterials, 24, 2339–2349. DOI: 10.1016/s0142-9612(03)00026-7.

    Article  CAS  Google Scholar 

  • Klug, H. P., & Alexander, L. E. (1959). X-ray diffraction procedures. New York, NY, USA: Wiley.

    Google Scholar 

  • Kong, L. J., Gao, Y., Cao, W. L., Gong, Y. D., Zhao, N. M., & Zhang, X. F. (2005). Preparation and characterization of nano-hydroxyapatite/chitosan composite scaffolds. Journal of Biomedical Materials Research Part A, 75A, 275–282. DOI: 10.1002/jbm.a.30414.

    Article  CAS  Google Scholar 

  • Li, J. J., Chen, Y. P., Yin, Y. J., Yao, F. L., & Yao, K. D. (2007). Modulation of nano-hydroxyapatite size via formation on chitosan-gelatin network film in situ. Biomaterials, 28, 781–790. DOI:10.1016/j.biomaterials.2006.09.042.

    Article  CAS  Google Scholar 

  • Manjubala, I., Ponomarev, I., Wilke, I., & Jandt, K. D. (2008). Growth of osteoblast like cells on biomimetic apatitecoated chitosan scaffolds. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 84B, 7–16. DOI: 10.1002/jbm.b.30838.

    Article  CAS  Google Scholar 

  • Merkus, H. G. (2009). Particle size measurements: fundamentals, practice, quality. New York, NY, USA: Springer.

    Google Scholar 

  • Murugan, R., & Ramakrishna, S. (2005). Crystallographic study of hydroxyapatite bioceramics derived from various sources. Crystal Growth & Design, 5, 111–112. DOI: 10.1021/cg034227s.

    Article  CAS  Google Scholar 

  • Nettles, D. L., Elder, S. H., & Gilbert, J. A. (2002). Potential use of chitosan as a cell scaffold material for cartilage tissue engineering. Tissue Engineering, 8, 1009–1016. DOI:10.1089/107632702320934100.

    Article  CAS  Google Scholar 

  • Oliveira, J. M., Rodrigues, M. T., Silva, S. S., Malafaya, P. B., Gomes, M. E., Viegas, C. A., Dias, I. R., Azevedo, J. T., Mano, J. F., & Reis, R. L. (2006). Novel hydroxyapatite/chitosan bilayered scaffold for osteochondral tissueengineering applications: Scaffold design and its performance when seeded with goat bone marrow stromal cells. Bioma terials, 27, 6123–6137. DOI:10.1016/j.biomaterials.2006.07.034.

    Article  CAS  Google Scholar 

  • Palazzo, B., Sidoti, M. C., Roveri, N., Tampieri, A., Sandri, M., Bertolazzi, L., Galbusera, F., Dubini, G., Vena, P., & Contro, R. (2005). Controlled drug delivery from porous hydroxyapatite grafts: An experimental and theoretical approach. Materials Science and Engineering: C, 25, 207–213. DOI:10.1016/j.msec.2005.01.011.

    Article  Google Scholar 

  • Park, J. H., Saravanakumar, G., Kim, K., & Kwon, I. C. (2010). Targeted delivery of low molecular drugs using chitosan and its derivatives. Advanced Drug Delivery Reviews, 62, 28–41. DOI:10.1016/j.addr.2009.10.003.

    Article  CAS  Google Scholar 

  • Peter, M., Ganesh, N., Selvamurugan, N., Nair, S. V., Furuike, T., Tamura, H., & Jayakumar, R. (2010). Preparation and characterization of chitosan-gelatin/nanohydroxyapatite composite scaffolds for tissue engineering applications. Carbohydrate Polymers, 80, 687–694. DOI: 10.1016/j.carbpol.2009.11.050.

    Article  CAS  Google Scholar 

  • Qiu, C. F., Xiao, X. F., Liu, R. F., & She, H. D. (2008). Biomimetic synthesis of spherical nano-hydroxyapatite with polyvinylpyrrolidone as template. Materials Science and Technology, 24, 612–617. DOI: 10.1179/174328407x176974.

    Article  CAS  Google Scholar 

  • Queiroz, A. C., Santos, J. D., Monteiro, F. J., Gibson, I. R., & Knowles, J. C. (2001). Adsorption and release studies of sodium ampicillin from hydroxyapatite and glass-reinforced hydroxyapatite composites. Biomaterials, 22, 1393–1400. DOI: 10.1016/s0142-9612(00)00296-9.

    Article  CAS  Google Scholar 

  • Ragetly, G., Griffon, D. J., & Chung, Y. S. (2010). The effect of type II collagen coating of chitosan fibrous scaffolds on mesenchymal stem cell adhesion and chondrogenesis. Acta Biomaterialia, 6, 3988–3997. DOI:10.1016/j.actbio.2010.05.016.

    Article  CAS  Google Scholar 

  • Rusu, V. M., Ng, C. H., Wilke, M., Tiersch, B., Fratzl, P., & Peter, M. G. (2005). Size-controlled hydroxyapatite nanoparticles as self-organized organic-inorganic composite materials. Biomaterials, 26, 5414–5426. DOI: 10.1016/j.biomaterials.2005.01.051.

    Article  CAS  Google Scholar 

  • Şentürk, S. B., Kahraman, D., Alkan, C., & Gokçe, İ. (2011). Biodegradable PEG/cellulose PEG/agarose and PEG/chitosan blends as shape stabilized phase change materials for latent heat energy storage. Carbohydrate Polymers, 84, 141–144. DOI:10.1016/j.carbpol.2010.11.015.

    Article  Google Scholar 

  • Suchanek, W., & Yoshimura, M. (1998). Processing and properties of hydroxyapatite-based biomaterials for use as hard tissue replacement implants. Journal of Materials Research, 13, 94–117. DOI:10.1557/jmr.1998.0015.

    Article  CAS  Google Scholar 

  • Teng, S. H., Lee, E. J., Yoon, B. H., Shin, D. S., Kim, H. E., & Oh, J. S. (2009). Chitosan/nanohydroxyapatite composite membranes via dynamic filtration for guided bone regeneration. Journal of Biomedical Materials Research: Part A, 88A, 569–580. DOI:10.1002/jbm.a.31897.

    Article  CAS  Google Scholar 

  • Thein-Han, W. W., & Misra, R. D. K. (2009). Biomimetic chitosan-nanohydroxyapatite composite scaffolds for bone tissue engineering. Acta Biomaterialia, 5, 1182–1197. DOI:10.1016/j.actbio.2008.11.025.

    Article  CAS  Google Scholar 

  • Tonegawa, T., Ikoma, T., Yoshioka, T., Chen, G. P., Hanagata, N., & Tanaka, J. (2008). Characterization and protein adsorption ability of zinc, iron and magnesium hydroxyapatite. Key Engineering Materials, 361–363, 187–190. DOI: 10.4028/www.scientific.net/kem.361-363.187.

    Article  Google Scholar 

  • Washington, C. (1992). Particle size analysis in pharmaceutics and other industries: Theory and practice. Chichester, UK: Ellis Horwood.

    Google Scholar 

  • Yamaguchi, I., Tokuchi, K., Fukuzaki, H., Koyama, Y., Takakuda, K., Monma, H., & Tanaka, J. (2001). Preparation and microstructure analysis of chitosan/hydroxyapatite nanocomposites. Journal of Biomedical Materials Research: Part A, 55, 20–27. DOI: 10.1002/1097-4636(200104)55:1〈20::aidjbm30〉3.0.co;2-f.

    Article  CAS  Google Scholar 

  • Yang, Q., Wang, J. X., Guo, F., & Chen, J. F. (2010). Preparation of hydroxyapatite nanoparticles by using high-gravity reactive precipitation combined with hydrothermal method. Industrial & Engineering Chemistry Research, 49, 9857–9863. DOI: 10.1021/ie1012757.

    Article  CAS  Google Scholar 

  • Zhang, Y. Z., Venugopal, J. R., El-Turki, A., Ramakrishna, S., Su, B., & Lim, C. T. (2008). Electrospun biomimetic nanocomposite nanofibers of hydroxyapatite/chitosan for bone tissue engineering. Biomaterials, 29, 4314–4322. DOI:10.1016/j.biomaterials.2008.07.038.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Réka Barabás.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barabás, R., Czikó, M., Dékány, I. et al. Comparative study of particle size analysis of hydroxyapatite-based nanomaterials. Chem. Pap. 67, 1414–1423 (2013). https://doi.org/10.2478/s11696-013-0409-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11696-013-0409-6

Keywords

Navigation