Skip to main content

Advertisement

Log in

Surface modification of quantum dots and magnetic nanoparticles with PEG-conjugated chitosan derivatives for biological applications

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

In this paper, amphiphilic chitosan derivatives (N-octyl-N-mPEG-chitosan, mPEG = poly(ethylene glycol) monomethyl ether; OPEGC) were successfully synthesised via the Schiff base reduction reaction of chitosan and mPEG-aldehyde, or octanal, with chitosan acting as the backbone of the grafted copolymers, and mPEG-aldehyde providing the hydrophilic chain or octanal providing the hydrophobic alkyl chain. The synthesis was confirmed by characterisation employing Fourier transform infrared spectroscopy (FTIR) and 1H NMR. In the subsequent procedure, water-soluble quantum dots (QDs) and iron(II,III) oxide (IO) nanoparticles, widely used as nanoprobes in medical applications, were produced by the incorporation of QDs or IO inside the polymeric micelle core. Finally, the optical properties of QDs incorporated into OPEGC (OPEGC@QDs) were characterised by UV-VIS spectroscopy, fluorescence spectroscopy, cell viability was obtained through MTT, and the morphology of their assembly formed in water were observed by atomic force microscope (AFM) and transmission electron microscope (TEM) and the QDs content of OPEGC@QDs was calculated following thermo gravimetric analysis (TGA). In addition, the properties of IO incorporated into OPEGC (OPEGC@IO) were characterised by vibrating sample magnetometry (VSM), FT-IR, MTT, TGA, AFM, and TEM. The results indicated that the OPEGC composite nanoparticles with size narrowly distributed, good water solubility, and low cytotoxicity were prepared here, which represented a high quantum yield or good super-paramagnetism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Alivisatos, P. (2004). The use of nanocrystals in biological detection. Nature Biotechnology, 22, 47–52. DOI: 10.1038/nbt927.

    Article  CAS  Google Scholar 

  • Bahadur, K. C. R., Lee, S. M., Yoo, E. S., Choi, J. H., & Ghim, H. D. (2009). Glycoconjugated chitosan stabilized iron oxide nanoparticles as a multifunctional nanoprobe. Materials Science and Engineering: C, 29, 1668–1673. DOI: 10.1016/j.msec.2009.01.005.

    Article  Google Scholar 

  • Bruchez, M., Jr., Moronne, M., Gin, P., Weiss, S., & Alivisatos, A. P. (1998). Semiconductor nanocrystals as fluorescent biological labels. Science, 281, 2013–2016. DOI: 10.1126/science.281.5385.2013.

    Article  CAS  Google Scholar 

  • Chan, D. C. F., Kirpotin, D. B., & Bunn, P. A., Jr. (1993). Synthesis and evaluation of colloidal magnetic iron oxides for the site-specific radiofrequency-induced hyperthermia of cancer. Journal of Magnetism and Magnetic Materials, 122, 374–378. DOI: 10.1016/0304-8853(93)91113-l.

    Article  CAS  Google Scholar 

  • Chang, E., Miller, J. S., Sun, J. T., Yu, W. W., Colvin, V. L., Drezek, R., & West, J. L. (2005). Protease-activated quantum dot probes. Biochemical and Biophysical Research Communications, 334, 1317–1321. DOI: 10.1016/j.bbrc.2005.07.028.

    Article  CAS  Google Scholar 

  • Chang, Y. L., Meng, X. L., Zhao, Y. L., Li, K., Zhao, B., Zhu, M., Li, Y. P., Chen, X. S., & Wang, J. Y. (2011). Novel water-soluble and pH-responsive anticancer drug nanocarriers: Doxorubicin-PAMAM dendrimer conjugates attached to superparamagnetic iron oxide nanoparticles (IONPs). Journal of Colloid and Interface Science, 363, 403–409. DOI: 10.1016/j.jcis.2011.06.086.

    Article  CAS  Google Scholar 

  • Chouly, C., Pouliquen, D., Lucet, I., Jeune, J. J., & Jallet, P. (1996). Development of superparamagnetic nanoparticles for MRI: effect of particle size, charge and surface nature on biodistribution. Journal of Microencapsulation, 13, 245–255. DOI: 10.3109/02652049609026013.

    Article  CAS  Google Scholar 

  • Dyal, A., Loos, K., Noto, M., Chang, S. W., Spagnoli, C., Shafi, K. V. P. M., Ulman, A., Cowman, M., & Gross, R. A. (2003). Activity of Candida rugosa lipase immobilized on γ-Fe2O3 magnetic nanoparticles. Journal of the American Chemical Society, 125, 1684–1685. DOI: 10.1021/ja021223n.

    Article  CAS  Google Scholar 

  • Gao, X. H., Cui, Y. Y., Levenson, R. M., Chung, L. W. K., & Nie, S. M. (2004). In vivo cancer targeting and imaging with semiconductor quantum dots. Nature Biotechnology, 22, 969–976. DOI: 10.1038/nbt994.

    Article  CAS  Google Scholar 

  • Gupta, A. K., & Gupta, M. (2005). Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials, 26, 3995–4021. DOI: 10.1016/j.biomaterials.2004.10.012.

    Article  CAS  Google Scholar 

  • Harris, J.M., Struck, E. C., Case, M. G., Paley, M. S., Yalpani, M., Van Alstine, J. M., & Brooks, D. E. (1984). Synthesis and characterization of poly(ethylene glycol) derivatives. Journal of Polymer Science: Polymer Chemistry Edition, 22, 341–352. DOI: 10.1002/pol.1984.170220207.

    Article  CAS  Google Scholar 

  • Hines, M. A., & Guyot-Sionnest, P. (1996). Synthesis and characterization of strongly luminescing ZnS-capped CdSe nanocrystals. Journal of Physical Chemistry, 100, 468–471. DOI: 10.1021/jp9530562.

    Article  CAS  Google Scholar 

  • Jiang, G. B., Quan, D. P., Liao, K. R., & Wang, H. H. (2006). Novel polymer micelles prepared from chitosan grafted hydrophobic palmitoyl groups for drug delivery. Molecular Pharmaceutics, 3, 152–160. DOI: 10.1021/mp050010c.

    Article  CAS  Google Scholar 

  • Khor, E., & Lim, L. Y. (2003). Implantable applications of chitin and chitosan. Biomaterials, 24, 2339–2349. DOI: 10.1016/s0142-9612(03)00026-7.

    Article  CAS  Google Scholar 

  • Kim, D. K., Zhang, Y., Kehr, J., Klason, T., Bjelke, B., & Muhammed, M. (2001). Characterization and MRI study of surfactant-coated superparamagnetic nanoparticles administered into the rat brain. Journal of Magnetism and Magnetic Materials, 225, 256–261. DOI: 10.1016/s0304-8853(00)01255-5.

    Article  CAS  Google Scholar 

  • Kondo, A., Kamura, H., & Higashitani, K. (1994). Development and application of thermo-sensitive magnetic immunomicrospheres for antibody purification. Applied Microbiology and Biotechnology, 41, 99–105. DOI: 10.1007/bf00166089.

    Article  CAS  Google Scholar 

  • Lee, J., Sundar, V. C., Heine, J. R., Bawendi, M. G., & Jensen, K. F. (2000). Full color emission from II-VI semiconductor quantum dot-polymer composites. Advanced Materials, 12, 1102–1105. DOI: 10.1002/1521-4095(200008)12:15〈1102::aidadma1102〉3.0.co;2-j.

    Article  CAS  Google Scholar 

  • Miwa, A., Ishibe, A., Nakano, M., Yamahira, T., Itai, S., Jinno, S., & Kawahara, H. (1998). Development of novel chitosan derivatives as micellar carriers of taxol. Pharmaceutical Research, 15, 1844–1850. DOI: 10.1023/a:1011901921995.

    Article  CAS  Google Scholar 

  • Mohapatra, S., Pramanik, N., Ghosh, S. K., & Pramanik, P. (2006). Synthesis and characterization of ultrafine poly(vinylalcohol phosphate) coated magnetite nanoparticles. Journal of Nanoscience and Nanotechnology, 6, 823–829. DOI: 10.1166/jnn.2006.117.

    Article  CAS  Google Scholar 

  • Mori, T., Okumura, M., Matsuura, M., Ueno, K., Tokura, S., Okamoto, Y., Minami, S., & Fujinaga, T. (1997). Effects of chitin and its derivatives on the proliferation and cytokine production of fibroblasts in vitro. Biomaterials, 18, 947–951. DOI: 10.1016/s0142-9612(97)00017-3.

    Article  CAS  Google Scholar 

  • Murray, C. B., Norris, D. J., & Bawendi, M. G. (1993). Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites. Journal of the American Chemical Society, 115, 8706–8715. DOI: 10.1021/ja00072a025.

    Article  CAS  Google Scholar 

  • Neuberger, T., Schöpf, B., Hofmann, H., Hofmann, M., & von Rechenberg, B. (2005). Superparamagnetic nanoparticles for biomedical applications: Possibilities and limitations of a new drug delivery system. Journal of Magnetism and Magnetic Materials, 293, 483–496. DOI: 10.1016/j.jmmm.2005.01.064.

    Article  CAS  Google Scholar 

  • Pellegrino, T., Manna, L., Kudera, S., Liedl, T., Koktysh, D., Rogach, A. L., Keller, S., Rädler, J., Natile, G., & Parak, W. J. (2004). Hydrophobic nanocrystals coated with an amphiphilic polymer shell: A general route to water soluble nanocrystals. Nano Letters, 4, 703–707. DOI: 10.1021/nl035172j.

    Article  CAS  Google Scholar 

  • Qu, L. H., & Peng, X. G. (2002). Control of photoluminescence properties of CdSe nanocrystals in growth. Journal of the American Chemical Society, 124, 2049–2055. DOI: 10.1021/ja017002j.

    Article  CAS  Google Scholar 

  • Reynolds, C. H., Annan, N., Beshah, K., Huber, J. H., Shaber, S. H., Lenkinski, R. E., & Wortman, J. A. (2000). Gadolinium-loaded nanoparticles: New contrast agents for magnetic resonance imaging. Journal of the American Chemical Society, 122, 8940–8945. DOI: 10.1021/ja001426g.

    Article  CAS  Google Scholar 

  • Roy, K., Mao, H. Q., Huang, S. K., & Leong, K. W. (1999). Oral gene delivery with chitosan-DNA nanoparticles generates immunologic protection in a murine model of peanut allergy. Nature Medicine, 5, 387–391. DOI: 10.1038/7385.

    Article  CAS  Google Scholar 

  • Shieh, D.B., Cheng, F. Y., Su, C.H., Yeh, C. S., Wu, M. T., Wu, Y. N., Tsai, C. Y., Wu, C. L., Chen, D. H., & Chou, C. H. (2005). Aqueous dispersions of magnetite nanoparticles with NH +3 surfaces for magnetic manipulations of biomolecules and MRI contrast agents. Biomaterials, 26, 7183–7191.DOI: 10.1016/j.biomaterials.2005.05.020.

    Article  CAS  Google Scholar 

  • Thanou, M., Verhoef, J. C., & Junginger, H. E. (2001). Oral drug absorption enhancement by chitosan and its derivatives. Advanced Drug Delivery Reviews, 52, 117–126. DOI: 10.1016/s0169-409x(01)00231-9.

    Article  CAS  Google Scholar 

  • Thode, K., Lück, M., Schröder, W., Semmler, W., Blunk, T., Müller, R. H., & Kresse, M. (1997). The influence of the sample preparation on plasma protein adsorption patterns on polysaccharide-stabilized iron oxide particles and N-terminal microsequencing of unknown proteins. Journal of Drug Targeting, 5, 35–43. DOI: 10.3109/10611869708995856.

    Article  CAS  Google Scholar 

  • Uchegbu, I. F., Sadiq, L., Arastoo, M., Gray, A. I., Wang, W., Waigh, R. D., & Schätzleinä, A. G. (2001). Quaternary ammonium palmitoyl glycol chitosan-a new polysoap for drug delivery. International Journal of Pharmaceutics, 224, 185–199. DOI: 10.1016/s0378-5173(01)00763-3.

    Article  CAS  Google Scholar 

  • Uyeda, H. T., Medintz, I. L., Jaiswal, J. K., Simon, S. M., & Mattoussi, H. (2005). Synthesis of compact multidentate ligands to prepare stable hydrophilic quantum dot fluorophores. Journal of the American Chemical Society, 127, 3870–3878. DOI: 10.1021/ja044031w.

    Article  CAS  Google Scholar 

  • Wang, X. H., Du, Y. M., Ding, S., Wang, Q. Q., Xiong, G. G., Xie, M., Shen, X. C., & Pang, D. W. (2006). Preparation and third-order optical nonlinearity of selfassembled chitosan/CdSe-ZnS core-shell quantum dots multilayer films. Journal of Physical Chemistry B, 110, 1566–1570. DOI: 10.1021/jp055916c.

    Article  CAS  Google Scholar 

  • Wu, X. G., Liu, H. J., Liu, J. Q., Haley, K. N., Treadway, J. A., Larson, J. P., Ge, N. F., Peale, F., & Bruchez, M. P. (2002). Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots. Nature Biotechnology, 21, 41–46. DOI: 10.1038/nbt764.

    Article  Google Scholar 

  • Wu, Z. Y., Zhao, Y. L., Qiu, F. P., Li, Y. P., Wang, S. W., Yang, B. H., Chen, L., Sun, J. H., & Wang, J. G. (2009a). Forming water-soluble CdSe/ZnS QDs using amphiphilic polymers, stearyl methacrylate/methylacrylate copolymers with different hydrophobic moiety ratios and their optical properties and stability. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 350, 121–129. DOI: 10.1016/j.colsurfa.2009.09.014.

    Article  CAS  Google Scholar 

  • Wu, Z. Y., Zhao, Y. L., Qiu, F. P., Ii, Y. P., Wang, S. W., Zhang, B., Yang, B. H., Zhang, Y. F., Gao, R. T., & Wang, J. G. (2009b). Synthesis and characterization of water-soluble, stable and highly luminescent itaconic acid/methacrylic acid copolymer-coated CdSe/CdS quantum dots. Journal of Luminescence, 129, 1125–1131. DOI: 10.1016/j.jlumin.2009.05.014.

    Article  CAS  Google Scholar 

  • Xie, X., Zhang, X., Zhang, H., Chen, D., & Fei, W. Y. (2004). Preparation and application of surface-coated superparamagnetic nanobeads in the isolation of genomic DNA. Journal of Magnetism and Magnetic Materials, 277, 16–23. DOI: 10.1016/j.jmmm.2003.09.054.

    Article  CAS  Google Scholar 

  • Xu, Z. C., Shen, C. M., Hou, Y. L., Gao, H. J., & Sun, S. H. (2009). Oleylamine as both reducing agent and stabilizer in a facile synthesis of magnetite nanoparticles. Chemistry of Materials, 21, 1778–1780. DOI: 10.1021/cm802978z.

    Article  CAS  Google Scholar 

  • Yao, Z., Zhang, C., Ping, Q., & Yu, L. (2007). A series of novel chitosan derivatives: Synthesis, characterization and micellar solubilization of paclitaxel. Carbohydrate Polymers, 68, 781–792. DOI: 10.1016/j.carbpol.2006.08.023.

    Article  CAS  Google Scholar 

  • Yoshioka, H., Nonaka, K. I., Fukuda, K., & Kazama, S. (1995). Chitosan-derived polymer-surfactants and their micellar properties. Bioscience, Biotechnology, and Biochemistry, 59, 1901–1904. DOI: 10.1271/bbb.59.1901.

    Article  CAS  Google Scholar 

  • Zhang, C., Ping, Q., Zhang, H. J., & Shen, J. (2003). Preparation of N-alkyl-O-sulfate chitosan derivatives and micellar solubilization of taxol. Carbohydrate Polymers, 54, 137–141. DOI: 10.1016/s0144-8617(03)00090-0.

    Article  CAS  Google Scholar 

  • Zhang, C., Qineng, P., & Zhang, H. J. (2004). Self-assembly and characterization of paclitaxel-loaded N-octyl-O-sulfate chitosan micellar system. Colloids and Surfaces B: Biointerfaces, 39, 69–75. DOI: 10.1016/j.colsurfb.2004.09.002.

    Article  CAS  Google Scholar 

  • Zhao, Y. L., Li, Y. P., Song, Y. T., Jiang, W., Wu, Z. Y., Wang, Y. A., Sun, J. H., & Wang, J. Y. (2009). Architecture of stable and water-soluble CdSe/ZnS core-shell dendron nanocrystals via ligand exchange. Journal of Colloid and Interface Science, 339, 336–343. DOI: 10.1016/j.jcis.2009.08.009.

    Article  CAS  Google Scholar 

  • Zhao, Y. L., Liu, S., Li, Y. P., Jiang, W., Chang, Y. L., Pan, S., Fang, X. X., Wang, Y. A., & Wang, J. Y. (2010). Synthesis and grafting of folate-PEG-PAMAM conjugates onto quantum dots for selective targeting of folate-receptor-positive tumor cells. Journal of Colloid and Interface Science, 350, 44–50. DOI: 10.1016/j.jcis.2010.05.035.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yapeng Li.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lv, Y., Li, K. & Li, Y. Surface modification of quantum dots and magnetic nanoparticles with PEG-conjugated chitosan derivatives for biological applications. Chem. Pap. 67, 1404–1413 (2013). https://doi.org/10.2478/s11696-013-0401-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11696-013-0401-1

Keywords

Navigation