Skip to main content

Advertisement

Log in

Effect of viscosity of a liquid membrane containing oleyl alcohol on the pertraction of butyric acid

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

Solvent formulation is important in the optimization of the mass-transfer through supported liquid membranes (SLM) in pertraction and membrane extraction. Oleyl alcohol (OA) is frequently used as the solvent or diluent in the extraction of carboxylic acids. A disadvantage of OA is its relatively high viscosity of 28.32 mPa s at 25°C. This can be decreased by the application of a less viscous OA diluent, e.g. dodecane. The relationship between the ratio of the distribution coefficient of butyric acid (BA), D F, and the viscosity of OA-dodecane solvents, µ, as extraction and transport characteristics, and the overall mass-transfer coefficient, K p, through SLMs was analyzed. Dependence of the D F/µ ratio on the OA concentration showed a maximum at the OA concentration of 15 mass % to 30 mass %. The OA concentration dependence of K p for SLMs exhibited also a maximum at about 30 mass % and 20 mass % of OA at the BA concentration driving force of 0.12 kmol m−3 and 0.3 kmol m−3, respectively. Shifting of the maximum in K p dependences towards lower OA concentrations by increasing the BA concentration driving force is in agreement with the D F/µ ratio dependence. Using pure OA as the solvent or diluent is not preferable and a mixture of a low viscosity diluent with the OA concentration below 40 mass % should be used. The presented results show the potential of the D F/µ ratio in the screening and formulation of solvents in extraction and SLM optimization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bilgin, M. (2006). Phase equilibria of liquid (water + butyric acid + oleyl alcohol) ternary system. The Journal of Chemical Thermodynamics, 38, 1634–1639. DOI: 10.1016/j.jct.2006.03.017.

    Article  CAS  Google Scholar 

  • Bilgin, M., Kirbaşlar, Ş. İ., Özcan, Ö., & Dramur, U. (2006). Distribution of butyric acid between water and several solvents. Journal of Chemical & Engineering Data, 51, 1546–1550. DOI: 10.1021/je060025z.

    Article  CAS  Google Scholar 

  • Blahušiak, M., Schlosser, Š., & Marták, J. (2010). Simulation of a hybrid fermentation-separation process for production of butyric acid. Chemical Papers, 64, 213–222. DOI: 10.2478/s11696-009-0114-7.

    Article  Google Scholar 

  • Blahušiak, M., Schlosser, Š., & Marták, J. (2011). Extraction of butyric acid by a solvent impregnated resin containing ionic liquid. Reactive and Functional Polymers, 71, 736–744. DOI: 10.1016/j.reactfunctpolym.2011.04.002.

    Article  Google Scholar 

  • Evans, P. J., & Wang, H. Y. (1988). Enhancement of butanol formation by Clostridium acetobutylicum in the presence of decanol-oleyl alcohol mixed extractants. Applied and Environmental Microbiology, 54, 1662–1667.

    CAS  Google Scholar 

  • Evans, P. J., & Wang, H. Y. (1990). Effects of extractive fermentation on butyric acid production by Clostridium acetobutylicum. Applied Microbiology and Biotechnology, 32, 393–397. DOI: 10.1007/bf00903771.

    Article  CAS  Google Scholar 

  • Grzenia, D. L., Schell, D. J., & Wickramasinghe, S. R. (2012a). Membrane extraction for detoxification of biomass hydrolysates. Bioresource Technology, 111, 248–254. DOI: 10.1016/j.biortech.2012.01.169.

    Article  CAS  Google Scholar 

  • Grzenia, D. L., Wickramasinghe, S. R., & Schell, D. J. (2012b). Fermentation of reactive-membrane-extracted and ammonium-hydroxide-conditioned dilute-acid-pretreated corn stover. Applied Biochemistry and Biotechnology, 166, 470–478. DOI: 10.1007/s12010-011-9442-5.

    Article  CAS  Google Scholar 

  • Hatzinikolaou, D. G., & Wang, H. Y. (1992). Extractive fermentation systems for organic acids production. The Canadian Journal of Chemical Engineering, 70, 543–552. DOI: 10.1002/cjce.5450700318.

    Article  CAS  Google Scholar 

  • Ingale, M. N., & Mahajani, V. V. (1994). Recovery of butyric acid, valeric acid, and caproic acid (BVC acids) from an aqueous waste stream using tributylphosphate (TBP) as an extractant. Separations Technology, 4, 252–257. DOI: 10.1016/0956-9618(94)80030-8.

    Article  CAS  Google Scholar 

  • Ingale, M. N., & Mahajani, V. V. (1996). Recovery of carboxylic acids, C2-C6, from an aqueous waste stream using tributylphosphate( TBP): Effect of presence of inorganic acids and their sodium salts. Separations Technology, 6, 1–7. DOI: 10.1016/0956-9618(95)00132-8.

    Article  CAS  Google Scholar 

  • Kertész, R., Schlosser, Š., & Šimo, M. (2004). Mass-transfer characteristics of a spiral-channel SLM module in pertraction of phenylalanine. Desalination, 163, 103–117. DOI: 10.1016/s0011-9164(04)90182-8.

    Article  Google Scholar 

  • Keshav, A., Wasewar, K. L., & Chand, S. (2009). Extraction of acrylic, propionic, and butyric acid using Aliquat 336 in oleyl alcohol: Equilibria and effect of temperature. Industrial & Engineering Chemistry Research, 48, 888–893. DOI: 10.1021/ie8010337.

    Article  CAS  Google Scholar 

  • Li, Z. Y., Qin, W., & Dai, Y. Y. (2002). Liquid-liquid equilibria of acetic, propionic, butyric, and valeric acids with trioctylamine as extractant. Journal of Chemical & Engineering Data, 47, 843–848. DOI: 10.1021/je015526t.

    Article  Google Scholar 

  • Marták, J., Schlosser, Š., Sabolová, E., Krištofíkova, L., & Rosenberg, M. (2003). Fermentation of lactic acid with Rhizopus arrhizus in a stirred tank reactor with a periodical bleed and feed operation. Process Biochemistry, 38, 1573–1583. DOI: 10.1016/s0032-9592(03)00059-1.

    Article  Google Scholar 

  • Marták, J., & Schlosser, Š. (2007). Extraction of lactic acid by phosphonium ionic liquids. Separation and Purification Technology, 57, 483–494. DOI: 10.1016/j.seppur.2006.09.013.

    Article  Google Scholar 

  • Marták, J., & Schlosser, Š. (2008). Liquid-liquid equilibria of butyric acid for solvents containing a phosphonium ionic liquid. Chemical Papers, 62, 42–50. DOI: 10.2478/s11696-007-0077-5.

    Article  Google Scholar 

  • Marták, J., Schlosser, Š., & Vlčkova, S. (2008). Pertraction of lactic acid through supported liquid membranes containing phosphonium ionic liquid. Journal of Membrane Science, 318, 298–310. DOI: 10.1016/j.memsci.2008.02.064.

    Article  Google Scholar 

  • Marták, J., Schlosser, Š., & Blahušiak, M. (2011). Mass-transfer in pertraction of butyric acid by phosphonium ionic liquids and dodecane. Chemical Papers, 65, 608–619. DOI: 10.2478/s11696-011-0069-3.

    Article  Google Scholar 

  • Reid, R. C., Prausnitz, J. M., & Sherwood, T. K. (1977). The properties of gases and liquids (3rd ed.). New York, NY, USA: McGraw-Hill.

    Google Scholar 

  • Sabolová, E., Schlosser, Š., & Marták, J. (2001). Liquid-liquid equilibria of butyric acid in water + solvent systems with trioctylamine as extractant. Journal of Chemical & Engineering Data, 46, 735–745. DOI: 10.1021/je000323a.

    Article  Google Scholar 

  • Shan, X. C., Qin, W., & Dai, Y. Y. (2006). Dependence of extraction equilibrium of monocarboxylic acid from aqueous solutions on the relative basicity of extractant. Chemical Engineering Science, 61, 2574–2581. DOI: 10.1016/j.ces.2005.11.026.

    Article  CAS  Google Scholar 

  • Vandák, D., Zigová, J., Šturdik, E., & Schlosser, Š. (1997). Evaluation of solvent and pH for extractive fermentation of butyric acid. Process Biochemistry, 32, 245–251. DOI: 10.1016/s0032-9592 (96)00084-2.

    Article  Google Scholar 

  • Wilke, C. R., & Chang, P. (1955). Correlation of diffusion coefficients in dilute solutions. AIChE Journal, 1, 264–270. DOI: 10.1002/aic.690010222.

    Article  CAS  Google Scholar 

  • Wu, Z. T., & Yang, S. T. (2003). Extractive fermentation for butyric acid production from glucose by Clostridium tyrobutyricum. Biotechnology and Bioengineering, 82, 93–102. DOI: 10.1002/bit.10542.

    Article  CAS  Google Scholar 

  • Zigová, J., Vandák, D., Schlosser, Š., & Šturdík, E. (1996). Extraction equilibria of butyric acid with organic solvents. Separation Science and Technology, 31, 2671–2684. DOI: 10.1080/01496399608000819.

    Article  Google Scholar 

  • Zigová, J., Šturdík, E., Vandák, D., & Schlosser, Š. (1999). Butyric acid production by Clostridium butyricum with integrated extraction and pertraction. Process Biochemistry, 34, 835–843. DOI: 10.1016/s0032-9592(99)00007-2.

    Article  Google Scholar 

  • Zigová, J., Švitel, J., & Šturdík, E. (2000). Possibilities of butyric acid production by butanol oxidation with Gluconobacter oxydans coupled with extraction. Chemical & Biochemical Engineering Quarterly, 14, 95–100.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marek Blahušiak.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Blahušiak, M., Marták, J., Miranda, F. et al. Effect of viscosity of a liquid membrane containing oleyl alcohol on the pertraction of butyric acid. Chem. Pap. 67, 1560–1568 (2013). https://doi.org/10.2478/s11696-013-0370-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11696-013-0370-4

Keywords

Navigation