Skip to main content
Log in

Polyaniline micro-/nanostructures: morphology control and formation mechanism exploration

  • Review
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

This article provides a brief overview of recent work by the authors’ group as well as related researches reported by others on controlling the morphology and exploring the formation mechanism of typical micro-/nanostructures of polyaniline (PANI) and aniline oligomers through template-free aniline chemical oxidation process. The contents are organised as follows: (i) tuning the morphology of aniline polymerisation products by employing ultrasonic irradiation, mass transfer, and pH profiles; (ii) exploring the formation mechanism of micro-/nanostructures during aniline chemical oxidation through examining the precipitation behaviours of aniline oligomers and polymers in a post-synthetic system; (iii) tailoring PANI micro-/nanostuctures into pre-designed morphology by introducing certain heterogeneous nucleation centres; (iv) application potential of PANI nanofibres in the areas of transparent conductive film, electromagnetic interference-shielding coating and graphene-based electrode materials. This short review concludes with our perspectives on the challenges faced in gaining the exact formation mechanism of PANI micro-/nanostructures and the future research possibility for morphologically precisely controlled PANI micro-/nanostructures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahmed, S. M. (2004). Mechanistic investigation of the oxidative polymerization of aniline hydrochloride in different media. Polymer Degradation and Stability, 85, 605–614. DOI:10.1016/j.polymdegradstab.2004.01.003.

    Article  CAS  Google Scholar 

  • Chattopadhyay, D., & Bain, M. K. (2008). Electrically conductive nanocomposites of polyaniline with poly(vinyl alcohol) and methylcellulose. Journal of Applied Polymer Science, 110, 2849–2853. DOI: 10.1002/app.28836.

    Article  CAS  Google Scholar 

  • Chiou, N. R., & Epstein, A. J. (2005a). Polyaniline nanofibers prepared by dilute polymerization. Advanced Materials, 17, 1679–1683. DOI:10.1002/adma.200401000.

    Article  CAS  Google Scholar 

  • Chiou, N. R., & Epstein, A. J. (2005b). A simple approach to control the growth of polyaniline nanofibers. Synthetic Metals, 153, 69–72. DOI:10.1016/j.synthmet.2005.07.145.

    Article  CAS  Google Scholar 

  • Ćirić-Marjanović, G., Trchová, M., & Stejskal, J. (2008). Theoretical study of the oxidative polymerization of aniline with peroxydisulfate: Tetramer formation. International Journal of Quantum Chemistry, 108, 318–333. DOI: 10.1002/qua.21506.

    Article  Google Scholar 

  • Ding, H., Wan, M., & Wei, Y. (2007). Controlling the diameter of polyaniline nanofibers by adjusting the oxidant redox potential. Advanced Materials, 19, 465–469. DOI:10.1002/adma.200600831.

    Article  CAS  Google Scholar 

  • Gizdavic-Nikolaidis, M. R., Stanisavljev, D. R., Easteal, A. J., & Zujovic, Z. D. (2010). A rapid and facile synthesis of nanofibrillar polyaniline using microwave radiation. Macromolecular Rapid Communications, 31, 657–661. DOI:10.1002/marc.200900800.

    Article  CAS  Google Scholar 

  • Gospodinova, N., Terlemezyan, L., Mokreva, P., & Kossev, K. (1993). On the mechanism of oxidative polymerization of aniline. Polymer, 34, 2434–2437. DOI: 10.1016/0032-3861(93)90834-w.

    Article  CAS  Google Scholar 

  • Gospodinova, N., Ivanov, D. A., Anokhin, D. V., Mihai, I., Vidal, L., Brun, S., Romanova, J., & Tadjer, A. (2009). Unprecedented route to ordered polyaniline: Direct synthesis of highly crystalline fibrillar films with strong ππ stacking alignment. Macromolecular Rapid Communications, 30, 29–33. DOI:10.1002/marc.200800434.

    Article  CAS  Google Scholar 

  • Gribkova, O. L., Nekrasov, A. A., Trchova, M., Ivanov, V. F., Sazikov, V. I., Razova, A. B., Tverskoy, V. A., & Vannikov, A. V. (2011). Chemical synthesis of polyaniline in the presence of poly(amidosulfonic acids) with different rigidity of the polymer chain. Polymer, 52, 2474–2484. DOI:10.1016/j.polymer.2011.04.003.

    Article  CAS  Google Scholar 

  • He, W., Zhang, W., Li, Y., & Jing, X. (2012). A high concentration graphene dispersion stabilized by polyaniline nanofibers. Synthetic Metals, 162, 1107–1113. DOI:10.1016/j.synthmet.2012.04.027.

    Article  CAS  Google Scholar 

  • Hopkins, A. R., Lipeles, R. A., & Hwang, S. J. (2008). Morphology characterization of polyaniline nano- and microstructures. Synthetic Metals, 158, 594–601. DOI: 10.1016/j.synthmet.2008.04.018.

    Article  CAS  Google Scholar 

  • House, E. H., & Wolfenden, J. H. (1952). The solubility of aniline hydrochloride in water. Journal of the American Chemical Society, 74, 562–563. DOI: 10.1021/ja01122a512.

    Article  CAS  Google Scholar 

  • Huang, L. M., Wang, Z. B., Wang, H. T., Cheng, X. L., Mitra, A., & Yan, Y. S. (2002). Polyaniline nanowires by electropolymerization from liquid crystalline phases. Journal of Materials Chemistry, 12, 388–391. DOI: 10.1039/b107499g.

    Article  CAS  Google Scholar 

  • Huang, J. X., Virji, S., Weiller, B. H., & Kaner, R. B. (2003). Polyaniline nanofibers: Facile synthesis and chemical sensors. Journal of the American Chemical Society, 125, 314–315. DOI: 10.1021/ja028371y.

    Article  CAS  Google Scholar 

  • Huang, J. X., & Kaner, R. B. (2004). A general chemical route to polyaniline nanofibers. Journal of the American Chemical Society, 126, 851–855. DOI: 10.1021/ja0371754.

    Article  CAS  Google Scholar 

  • Huang, J. X., & Kaner, R. B. (2006). The intrinsic nanofibrillar morphology of polyaniline. Chemical Communications, 2006, 367–376. DOI: 10.1039/b510956f.

    Article  Google Scholar 

  • Huang, Y. F., & Lin, C. W. (2009). Introduction of methanol in the formation of polyaniline nanotubes in an acid-free aqueous solution through a self-curling process. Polymer, 50, 775–782. DOI:10.1016/j.polymer.2008.12.016.

    Article  CAS  Google Scholar 

  • Ivanov, V. F., Gribkova, O. L., Cheberyako, K. V., Nekrasov, A. A., Tverskoi, V. A., & Vannikov, A. V. (2004). Template synthesis of polyaniline in the presence of poly-(2-acrylamido-2-methyl-1-propanesulfonic acid). Russian Journal of Electrochemistry, 40, 299–304. DOI:10.1023/b:ruel.0000019668.68527.cc.

    Article  CAS  Google Scholar 

  • Jing, X. L., Wang, Y. Y., Wu, D., She, L., & Guo, Y. (2006). Polyaniline nanofibers prepared with ultrasonic irradiation. Journal of Polymer Science Part A: Polymer Chemistry, 44, 1014–1019. DOI: 10.1002/pola.21217.

    Article  CAS  Google Scholar 

  • Jing, X. L., Wang, Y. Y., Wu, D., & Qiang, J. P. (2007). Sonochemical synthesis of polyaniline nanofibers. Ultrasonics Sonochemistry, 14, 75–80. DOI:10.1016/j.ultsonch.2006.02.001.

    Article  CAS  Google Scholar 

  • Konyushenko, E. N., Trchová, M., Stejskal, J., & Sapurina, I. (2010). The role of acidity profile in the nanotubular growth of polyaniline. Chemical Papers, 64, 56–64. DOI: 10.2478/s11696-009-0101-z.

    Article  CAS  Google Scholar 

  • Kuznetsov, Y. A., & Timoshenko, E. G. (1999). On the conformational structure of a stiff homopolymer. Journal of Chemical Physics, 111, 3744–3752. DOI: 10.1063/1.479655.

    Article  CAS  Google Scholar 

  • Laslau, C., Zujovic, Z. D., & Travas-Sejdic, J. (2009a). Polyaniline “nanotube” self-assembly: The stage of granular agglomeration on nanorod templates. Macromolecular Rapid Communications, 30, 1663–1668. DOI:10.1002/marc.200900244.

    Article  CAS  Google Scholar 

  • Laslau, C., Zujovic, Z. D., Zhang, L., Bowmaker, G. A., & Travas-Sejdic, J. (2009b). Morphological evolution of selfassembled polyaniline nanostuctures obtained by pH-stat chemical oxidation. Chemistry of Materials, 21, 954–962. DOI: 10.1021/cm803447a.

    Article  CAS  Google Scholar 

  • Laslau, C., Zujovic, Z., & Travas-Sejdic, J. (2010). Theories of polyaniline nanostructure self-assembly: Towards an expanded, comprehensive Multi-Layer Theory (MLT). Progress in Polymer Science, 35, 1403–1419. DOI: 10.1016/j.progpolymsci.2010.08.002.

    Article  CAS  Google Scholar 

  • Laslau, C., Zujovic, Z. D., & Travas-Sejdic, J. (2011). pHstat control and high resolution electron microscopy of multi-layered polyaniline nanofibers and nanosheets. Journal of Advanced Microscopy Research, 6, 35–39. DOI:10.1166/jamr.2011.1051.

    Article  CAS  Google Scholar 

  • Li, W. G., & Wang, H. L. (2004). Oligomer-assisted synthesis of chiral polyaniline nanofibers. Journal of the American Chemical Society, 126, 2278–2279. DOI: 10.1021/ja039672q.

    Article  CAS  Google Scholar 

  • Li, J., Tang, H. Q., Zhang, A. Q., Shen, X. T., & Zhu, L. H. (2007). A new strategy for the synthesis of polyaniline nanostructures: From nanofibers to nanowires. Macromolecular Rapid Communications, 28, 740–745. DOI: 10.1002/marc.200600810.

    Article  CAS  Google Scholar 

  • Li, G. C., Zhang, C. Q., & Peng, H. R. (2008). Facile synthesis of self-assembled polyaniline nanodisks. Macromolecular Rapid Communications, 29, 63–67. DOI:10.1002/marc.200700584.

    Article  Google Scholar 

  • Li, Y., & Jing, X. L. (2009). Morphology control of chemically prepared polyaniline nanostructures: Effects of mass transfer. Reactive and Functional Polymers, 69, 797–807. DOI:10.1016/j.reactfunctpolym.2009.06.009.

    Article  CAS  Google Scholar 

  • Li, C., Bai, H., & Shi, G. (2009a). Conducting polymer nanomaterials: electrosynthesis and applications. Chemical Society Reviews, 38, 2397–2409. DOI: 10.1039/b816681c.

    Article  CAS  Google Scholar 

  • Li, Y., Wang, Y. Y., Wu, D., & Jing, X. L. (2009b). Effects of ultrasonic irradiation on the morphology of chemically prepared polyaniline nanofibers. Journal of Applied Polymer Science, 113, 868–875. DOI: 10.1002/app.29970.

    Article  CAS  Google Scholar 

  • Li, Y., Wang, Y., Jing, X. L., & Zhu, R. H. (2011a). Early stage pH profile: the key factor controlling the construction of polyaniline micro/nanostructures. Journal of Polymer Research, 18, 2119–2131. DOI: 10.1007/s10965-011-9622-6.

    Article  CAS  Google Scholar 

  • Li, G., Li, Y., Li, Y., Peng, H., & Chen, K. (2011b). Polyaniline nanorings and flat hollow capsules synthesized by in situ sacrificial oxidative templates. Macromolecules, 44, 9319–9323. DOI:10.1021/ma2014854.

    Article  CAS  Google Scholar 

  • Li, Y., He, W., Feng, J., & Jing, X. L. (2012). Self-assembly of aniline oligomers in aqueous medium. Colloid and Polymer Science, 290, 817–828. DOI: 10.1007/s00396-012-2597-y.

    CAS  Google Scholar 

  • Liu, W., Cholli, A. L., Nagarajan, R., Kumar, J., Tripathy, S., Bruno, F. F., & Samuelson, L. (1999). The role of template in the enzymatic synthesis of conducting polyaniline. Journal of the American Chemical Society, 121, 11345–11355. DOI: 10.1021/ja9926156.

    Article  CAS  Google Scholar 

  • Liu, Z., Zhang, X. Y., Poyraz, S., Surwade, S. P., & Manohar, S. K. (2010). Oxidative template for conducting polymer nanoclips. Journal of the American Chemical Society, 132, 13158–13159. DOI: 10.1021/ja105966c.

    Article  CAS  Google Scholar 

  • Lü, Q. F., & Cheng, X. S. (2009). Preparation of highyield polyaniline nanofibers via an unstirred polymerization. e-polymers, 2009, 084.

    Google Scholar 

  • Ma, H. Y., Gao, Y., Li, Y. H., Gong, J., Li, X., Fan, B., & Deng, Y. L. (2009). Ice-templating synthesis of polyaniline microflakes stacked by one-dimensional nanofibers. Journal of Physical Chemistry C, 113, 9047–9052. DOI: 10.1021/jp8112683.

    Article  CAS  Google Scholar 

  • Mallick, K., Witcomb, M. J., Dinsmore, A., & Scurrell, M. S. (2006). Polymerization of aniline by cupric sulfate: A facile synthetic route for producing polyaniline. Journal of Polymer Research, 13, 397–401. DOI: 10.1007/s10965-006-9057-7.

    Article  CAS  Google Scholar 

  • Martin, C. R. (1996). Membrane-based synthesis of nanomaterials. Chemistry of Materials, 8, 1739–1746. DOI: 10.1021/cm960166s.

    Article  CAS  Google Scholar 

  • Mi, H. Y., Zhang, X. G., Yang, S. D., Ye, X. G., & Luo, J. M. (2008). Polyaniline nanofibers as the electrode material for supercapacitors. Materials Chemistry and Physics, 112, 127–131. DOI:10.1016/j.matchemphys.2008.05.022.

    Article  CAS  Google Scholar 

  • Nemzer, L. R., Schwartz, A., & Epstein, A. J. (2010). Enzyme entrapment in reprecipitated polyaniline nanoand microparticles. Macromolecules, 43, 4324–4330. DOI: 10.1021/ma100112g.

    Article  CAS  Google Scholar 

  • Nickels, P., Dittmer, W. U., Beyer, S., Kotthaus, J. P., & Simmel, F. C. (2004). Polyaniline nanowire synthesis templated by DNA. Nanotechnology, 15, 1524–1529. DOI: 10.1088/0957-4484/15/11/026.

    Article  CAS  Google Scholar 

  • Olad, A., Ilghami, F., & Nosrati, R. (2012). Surfactant-assisted synthesis of polyaniline nanofibres without shaking and stirring: effect of conditions on morphology and conductivity. Chemical Papers, 66, 757–764. DOI: 10.2478/s11696-012-0197-4.

    Article  CAS  Google Scholar 

  • Pelesko, J. A. (2007). Self assembly: The science of things that put themselves together. Boca Raton, FL, USA: Chapman & Hall.

    Book  Google Scholar 

  • Pillalamarri, S. K., Blum, F. D., Tokuhiro, A. T., Story, J. G., & Bertino, M. F. (2005). Radiolytic synthesis of polyaniline nanofibers: A new templateless pathway. Chemistry of Materials, 17, 227–229. DOI: 10.1021/cm0488478.

    Article  CAS  Google Scholar 

  • Przybyłek, M., & Gaca, J. (2012). Reaction of aniline with ammonium persulphate and concentrated hydrochloric acid: Experimental and DFT studies. Chemical Papers, 66, 699–708. DOI: 10.2478/s11696-012-0163-1.

    Article  Google Scholar 

  • Sapurina, I., & Stejskal, J. (2008). The mechanism of the oxidative polymerization of aniline and the formation of supramolecular polyaniline structures. Polymer International, 57, 1295–1325. DOI: 10.1002/pi.2476.

    Article  CAS  Google Scholar 

  • Song, S. Y., Pan, L. J., Li, Y., Shi, Y., Pu, L., Zhang, R., & Zheng, Y. D. (2008). Self-assembly of polyaniline: Mechanism study. Chinese Journal of Chemical Physics, 21, 187–192. DOI: 10.1088/1674-0068/21/02/187-192.

    Article  CAS  Google Scholar 

  • Stejskal, J., Spirkova, M., Riede, A., Helmstedt, M., Mokreva, P., & Prokes, J. (1999). Polyaniline dispersions 8. The control of particle morphology. Polymer, 40, 2487–2492. DOI: 10.1016/s0032-3861(98)00478-9.

    Article  CAS  Google Scholar 

  • Stejskal, J., & Sapurina, I. (2004). On the origin of colloidal particles in the dispersion polymerization of aniline. Journal of Colloid and Interface Science, 274, 489–495. DOI:10.1016/j.jcis.2004.02.053.

    Article  CAS  Google Scholar 

  • Stejskal, J., Sapurina, I., Trchova, M., & Konyushenko, E. N. (2008). Oxidation of aniline: Polyaniline granules, nanotubes, and oligoaniline microspheres. Macromolecules, 41, 3530–3536. DOI: 10.1021/ma702601q.

    Article  CAS  Google Scholar 

  • Stejskal, J., Sapurina, I., & Trchová, M. (2010). Polyaniline nanostructures and the role of aniline oligomers in their formation. Progress in Polymer Science, 35, 1420–1481. DOI:10.1016/j.progpolymsci.2010.07.006.

    Article  CAS  Google Scholar 

  • Stejskal, J., & Trchová, M. (2012). Aniline oligomers versus polyaniline. Polymer International, 61, 240–251. DOI: 10.1002/pi.3179.

    Article  CAS  Google Scholar 

  • Sun, H. Z., Wei, H. T., Zhang, H., Ning, Y., Tang, Y., Zhai, F., & Yang, B. (2011). Self-assembly of CdTe nanoparticles into dendrite structure: A microsensor to Hg2+. Langmuir, 27, 1136–1142. DOI: 10.1021/la104325s.

    Article  Google Scholar 

  • Surwade, S. P., Dua, V., Manohar, N., Manohar, S. K., Beck, E., & Ferraris, J. P. (2009a). Oligoaniline intermediates in the aniline-peroxydisulfate system. Synthetic Metals, 159, 445–455. DOI:10.1016/j.synthmet.2008.11.002.

    Article  CAS  Google Scholar 

  • Surwade, S. P., Manohar, N., & Manohar, S. K. (2009b). Origin of bulk nanoscale morphology in conducting polymers. Macromolecules, 42, 1792–1795. DOI: 10.1021/Ma900141g.

    Article  CAS  Google Scholar 

  • Surwade, S. P., Agnihotra, S. R., Dua, V., Manohar, N., Jain, S., Ammu, S., & Manohar, S. K. (2009c). Catalyst-free synthesis of oligoanilines and polyaniline nanofibers using H2O2. Journal of the American Chemical Society, 131, 12528–12529. DOI: 10.1021/ja905014e.

    Article  CAS  Google Scholar 

  • Tang, Z. Y., Kotov, N. A., & Giersig, M. (2002). Spontaneous organization of single CdTe nanoparticles into luminescent nanowires. Science, 297, 237–240. DOI: 10.1126/science.1072086.

    Article  CAS  Google Scholar 

  • Tran, H. D., Norris, I., D’Arcy, J. M., Tsang, H., Wang, Y., Mattes, B. R., & Kaner, R. B. (2008a). Substituted polyaniline nanofibers produced via rapid initiated polymerization. Macromolecules, 41, 7405–7410. DOI: 10.1021/ma800122d.

    Article  CAS  Google Scholar 

  • Tran, H. D., Wang, Y., D’Arcy, J. M., & Kaner, R. B. (2008b). Toward an understanding of the formation of conducting polymer nanofibers. ACS Nano, 2, 1841–1848. DOI: 10.1021/nn800272z.

    Article  CAS  Google Scholar 

  • Tran, H. D., D’Arcy, J. M., Wang, Y., Beltramo, P. J., Strong, V. A., & Kaner, R. B. (2011). The oxidation of aniline to produce “polyaniline”: a process yielding many different nanoscale structures. Journal of Materials Chemistry, 21, 3534–3550. DOI: 10.1039/c0jm02699a.

    Article  CAS  Google Scholar 

  • Trchová, M., Morávková, Z., Šědenková, I., & Stejskal, J. (2012). Spectroscopy of thin polyaniline films deposited during chemical oxidation of aniline. Chemical Papers, 66, 415–445. DOI: 10.2478/s11696-012-0142-6.

    Article  Google Scholar 

  • Venancio, E. C., Wang, P. C., & MacDiarmid, A. G. (2006). The azanes: A class of material incorporating nano/micro self-assembled hollow spheres obtained by aqueous oxidative polymerization of aniline. Synthetic Metals, 156, 357–369. DOI:10.1016/j.synthmet.2005.08.035.

    Article  CAS  Google Scholar 

  • Wan, M. X. (2009). Some issues related to polyaniline micro-/nanostructures. Macromolecular Rapid Communications, 30, 963–975. DOI:10.1002/marc.200800817.

    Article  CAS  Google Scholar 

  • Wang, Y. (2007). Syntheses and applications of polyaniline nanofibers. Doctor of Engineering Science thesis, Xi’an Jiaotong University, Xi’an, China.

    Google Scholar 

  • Wang, X., Liu, N., Yan, X., Zhang, W. J., & Wei, Y. (2005a). Alkali-guided synthesis of polyaniline hollow microspheres. Chemistry Letters, 34, 42–43. DOI:10.1246/cl.2005.42.

    Article  Google Scholar 

  • Wang, Y., Liu, Z. M., Han, B.X., Sun, Z. Y., Huang, Y., & Yang, G. Y. (2005b). Facile synthesis of polyaniline nanofibers using chloroaurate acid as the oxidant. Langmuir, 21, 833–836. DOI: 10.1021/la047442z.

    Article  CAS  Google Scholar 

  • Wang, Y. Y., & Jing, X. L. (2007). Transparent conductive thin films based on polyaniline nanofibers. Materials Science and Engineering: B, 138, 95–100. DOI:10.1016/j.mseb.2006.12. 016.

    Article  CAS  Google Scholar 

  • Wang, Y. Y., Jing, X. L., & Kong, J. H. (2007a). Polyaniline nanofibers prepared with hydrogen peroxide as oxidant. Synthetic Metals, 157, 269–275. DOI:10.1016/j.synthmet.2007. 03.007.

    Article  CAS  Google Scholar 

  • Wang, J. X., Wang, J. S., Zhang, X. Y., & Wang, Z. (2007b). Assembly of polyaniline nanostructures. Macromolecular Rapid Communications, 28, 84–87. DOI:10.1002/marc.200600557.

    Article  Google Scholar 

  • Wang, Y. Y., & Jing, X. L. (2008). Formation of polyaniline nanofibers: A morphological study. Journal of Physical Chemistry B, 112, 1157–1162. DOI: 10.1021/jp076112v.

    Article  CAS  Google Scholar 

  • Wang, Y., Tran, H. D., Liao, L., Duan, X. F., & Kaner, R. B. (2010). Nanoscale morphology, dimensional control, and electrical properties of oligoanilines. Journal of the American Chemical Society, 132, 10365–10373. DOI: 10.1021/ja1014184.

    Article  CAS  Google Scholar 

  • Wang, Y., Liu, J. L., Tran, H. D., Mecklenburg, M., Guan, X. N., Stieg, A. Z., Regan, B. C., Martin, D. C., & Kaner, R. B. (2012). Morphological and dimensional control via hierarchical assembly of doped oligoaniline single crystals. Journal of the American Chemical Society, 134, 9251–9262 DOI: 10.1021/ja301061a.

    Article  CAS  Google Scholar 

  • Wei, Y., Tang, X., Sun, Y., & Focke, W. W. (1989). A study of the mechanism of aniline polymerization. Journal of Polymer Science Part A: Polymer Chemistry, 27, 2385–2396. DOI:10.1002/pola.1989.080270720.

    Article  CAS  Google Scholar 

  • Wu, J. H., Tang, Q. W., Li, Q. H., & Lin, J. M. (2008). Self-assembly growth of oriented polyaniline arrays: A morphology and structure study. Polymer, 49, 5262–5267. DOI:10.1016/j.polymer.2008.09.044.

    Article  CAS  Google Scholar 

  • Wu, Q., Xu, Y. X., Yao, Z. Y., Liu, A., & Shi, G. Q. (2010). Supercapacitors based on flexible graphene/polyaniline nano-fiber composite films. ACS Nano, 4, 1963–1970. DOI: 10.1021 /nn1000035.

    Article  CAS  Google Scholar 

  • Xu, A. W. (2009). Soft chemistry route to synthesis of onedimensional nanostructures and their properties. In Y. Zhou (Ed.), One-dimensional nanostructures concepts, applications and perspectives (pp. 220–272). Hefei, China: University of Science and Technology of China Press. (in Chinese)

    Google Scholar 

  • Xu, J. J., Wang, K., Zu, S. Z., Han, B. H., & Wei, Z. X. (2010). Hierarchical nanocomposites of polyaniline nanowire arrays on graphene oxide sheets with synergistic effect for energy storage. ACS Nano, 4, 5019–5026. DOI: 10.1021/nn1006539.

    Article  CAS  Google Scholar 

  • Zhang, X. Y., Goux, W. J., & Manohar, S. K. (2004). Synthesis of polyaniline nanofibers by “nanofiber seeding”. Journal of the American Chemical Society, 126, 4502–4503. DOI: 10.1021/ja031867a.

    Article  CAS  Google Scholar 

  • Zhang, D. H., & Wang, Y. Y. (2006). Synthesis and applications of one-dimensional nano-structured polyaniline: An overview. Materials Science and Engineering B-Solid State Materials for Advanced Technology, 134, 9–19. DOI:10.1016/j.mseb.2006.07.037.

    Article  CAS  Google Scholar 

  • Zhang, L. J., Zujovic, Z. D., Peng, H., Bowmaker, G. A., Kilmartin, P. A., & Travas-Sejdic, J. (2008). Structural characteristics of polyaniline nanotubes synthesized from different buffer solutions. Macromolecules, 41, 8877–8884. DOI: 10.1021/ma801728j.

    Article  CAS  Google Scholar 

  • Zhang, K. Q., & Jing, X. L. (2009). Preparation and characterization of polyaniline with high electrical conductivity. Polymers for Advanced Technologies, 20, 689–695. DOI: 10.1002/pat.1333.

    Article  CAS  Google Scholar 

  • Zhang, Z. M., Deng, J. Y., & Wan, M. X. (2009a). Highly crystalline and thin polyaniline nanofibers oxidized by ferric chloride. Materials Chemistry and Physics, 115, 275–279. DOI:10.1016/j.matchemphys.2008.12.005.

    Article  CAS  Google Scholar 

  • Zhang, H. B., Wang, J. X., Wang, Z., Zhang, F. B., & Wang, S. C. (2009b). A novel strategy for the synthesis of sheetlike polyaniline. Macromolecular Rapid Communications, 30, 1577–1582. DOI:10.1002/marc.200900228.

    Article  Google Scholar 

  • Zhang, K. Q., & Li, Y. (2011). Electrical conductivity enhancement of polyaniline by refluxing. Polymers for Advanced Technologies, 22, 2084–2090. DOI: 10.1002/pat.1725.

    Article  CAS  Google Scholar 

  • Zhang, X., Zhu, J. H., Haldolaarachchige, N., Ryu, J., Young, D. P., Wei, S. Y., & Guo, Z. H. (2012). Synthetic process engineered polyaniline nanostructures with tunable morphol ogy and physical properties. Polymer, 53, 2109–2120. DOI:10.1016/j.polymer.2012.02.042.

    Article  CAS  Google Scholar 

  • Zhou, Y. C., Geng, J. X., Li, G., Zhou, E. L., Chen, L., & Zhang, W. J. (2006). Crystal structure and morphology of phenyl-capped tetraaniline in the leucoemeraldine oxidation state. Journal of Polymer Science Part B: Polymer Physics, 44, 764–769. DOI:10.1002/polb.20700.

    Article  CAS  Google Scholar 

  • Zhou, C. Q., Han, J., & Guo, R. (2008). Controllable synthesis of polyaniline multidimensional architectures: From plate-like structures to flower-like superstructures. Macromolecules, 41, 6473–6479. DOI: 10.1021/ma800500u.

    Article  CAS  Google Scholar 

  • Zujovic, Z. D., Laslau, C., Bowmaker, G. A., Kilmartin, P. A., Webber, A. L., Brown, S. P., & Travas-Sejdic, J. (2010). Role of aniline oligomeric nanosheets in the formation of polyaniline nanotubes. Macromolecules, 43, 662–670. DOI: 10.1021/ma902109r.

    Article  CAS  Google Scholar 

  • Zujovic, Z. D., Laslau, C., & Travas-Sejdic, J. (2011a). Lamellarstructured nanoflakes comprised of stacked oligoaniline nanosheets. Chemistry — An Asian Journal, 6, 791–796. DOI:10.1002/asia.201000703.

    Article  CAS  Google Scholar 

  • Zujovic, Z. D., Wang, Y., Bowmaker, G. A., & Kaner, R. B. (2011b). Structure of ultralong polyaniline nanofibers using initiators. Macromolecules, 44, 2735–2742. DOI: 10.1021/ma102772t.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin-Li Jing.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Y., Zheng, JL., Feng, J. et al. Polyaniline micro-/nanostructures: morphology control and formation mechanism exploration. Chem. Pap. 67, 876–890 (2013). https://doi.org/10.2478/s11696-013-0347-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11696-013-0347-3

Keywords

Navigation