Skip to main content
Log in

A new, fully validated and interpreted quantitative structure-activity relationship model of p-aminosalicylic acid derivatives as neuraminidase inhibitors

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

A multivariate QSAR study with a set of 34 p-aminosalicylic acid derivatives, described as neuraminidase inhibitors of the H1N1 viruses, is presented in this work. The variable selection was performed with the Ordered Predictors Selection (OPS) algorithm and the model was built with the Partial Least Squares (PLS) regression method. Leave-N-out cross-validation and y-randomization tests showed that the model was robust and free from chance correlation. The external predictive ability was superior to the 3D-QSAR model previously published. Moreover, it was possible to perform a mechanistic interpretation, where the descriptors referred directly to the mechanism of interaction with the neuraminidase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abed, Y., Baz, M., & Boivin, G. (2009). A novel neuraminidase deletion mutation conferring resistance to oseltamivir in clinical influenza A/H3N2 virus. The Journal of Infectious Disease, 199, 180–183. DOI: 10.1086/595736.

    Article  CAS  Google Scholar 

  • Accelrys (2009). Discovery Studio Visualizer 2.5.5 [computer software]. San Diego, CA, USA: Accelrys, Inc.

    Google Scholar 

  • ACD/Labs (2010). ACD/ChemSketch 12 [computer software]. Toronto, Canada: Advanced Chemistry Development, Inc.

    Google Scholar 

  • Aptula, A. O., Jeliazkova, N. G., Schultz, T. W., & Cronin, M. T. D. (2005). The better predictive model: High q 2 for the training set or low root mean square error of prediction for the test set? QSAR & Combinatorial Science, 24, 385–396. DOI: 10.1002/qsar.200430909.

    Article  CAS  Google Scholar 

  • Brazilian Health Surveillance Secretariat (2009). Situação epidemiológica da Influenza Pandęmica (H1N1) 2009 no Mundo e no Brasil, até a Semana Epidemiológica 47 de 2009. Retrieved November 20, 2012, from http://portal.saude.gov.br/portal/arquivos/pdf/boletim_influenza_se_47.pdf

  • Consonni, V., Todeschini, R., & Pavan, M. (2002). Structure/response correlations and similarity/diversity analysis by GETAWAY descriptors. 1. Theory of the novel 3D molecular descriptors. Journal of Chemical Information and Computer Science, 42, 682–692. DOI: 10.1021/ci015504a.

    CAS  Google Scholar 

  • Dave, K., Gandhi, M., Panchal, H., & Vaidya, M. (2011). Revision of QSAR, docking, and molecular modeling studies of anti-influenza virus A (H1N1) drugs and targets: Analysis of hemagglutinins 3D structure. Current Computer-Aided Drug Design, 7, 255–262.

    Article  CAS  Google Scholar 

  • de Fátima, A., Baptistella, L. H. B., Pilli, R. A., & Modolo, L. V. (2005). Sialic acids: from the comprehension of their involvement in biological processes to antiinfluenza drug design. Química Nova, 28, 306–316. DOI: 10.1590/s0100-40422005000200023.

    Article  Google Scholar 

  • de Melo, E. B. (2012). A new quantitative structure-property relationship model to predict bioconcentration factors of polychlorinated biphenyls (PCBs) in fishes using E-state index and topological descriptors. Ecotoxicological and Environmental Safety, 75, 213–222. DOI: 10.1016/j.ecoenv.2011.08.026.

    Article  Google Scholar 

  • de Melo, E. B., & Ferreira, M. M. C. (2009). Multivariate QSAR study of 4,5-dihydroxypyrimidine carboxamides as HIV-1 integrase inhibitors. European Journal of Medicinal Chemistry, 44, 3577–3583. DOI: 10.1016/j.ejmech.2009.03.001.

    Article  Google Scholar 

  • Ekiert, D. C., Bhabha, G., Elsliger, M. A., Friesen, R. H. E., Jongeneelen, M., Throsby, M., Goudsmit, J., & Wilson, I. A. (2009). Antibody recognition of a highly conserved influenza virus epitope. Science, 324, 246–251. DOI: 10.1126/science.1171491.

    Article  CAS  Google Scholar 

  • Ekiert, D. C., Friesen, R. H. E., Bhabha, G., Kwaks, T., Jongeneelen, M., Yu, W. L., Ophorst, C., Cox, F., Korse, H. J. W. M., Brandenburg, B., Vogels, R., Brakenhoff, J. P. J., Kompier, R., Koldijk, M. H., Cornelissen, L. A. H. M., Poon, L. L. M., Peiris, M., Koudstaal, W., Wilson, I. A., & Goudsmit, J. (2011). A highly conserved neutralizing epitope on group 2 influenza A viruses. Science, 333, 843–850. DOI: 10.1126/science.1204839.

    Article  CAS  Google Scholar 

  • Eriksson, L., Jaworska, J., Worth, A. P., Cronin, M. T. D., McDowell, R. M., & Gramatica, P. (2003). Methods for reliability and uncertainty assessment and for applicability evaluations of classification and regression-based QSARs. Environmental Health Perspectives, 111, 1361–1375. DOI: 10.1289/ehp.5758.

    Article  CAS  Google Scholar 

  • Falagas, M. E., Koletsi, P. K., Vouloumanou, E. K., Rafailidis, P. I., Kapaskelis, A. M., & Rello, J. (2010). Effectiveness and safety of neuraminidase inhibitors in reducing influenza complications: a meta-analysis of randomized controlled trials. Journal of Antimicrobial Chemotherapy, 65, 1330–1346. DOI: 10.1093/jac/dkq158.

    Article  CAS  Google Scholar 

  • Ferreira, M. M. C. (2002). Multivariate QSAR. Journal of the Brazilian Chemical Society, 13, 742–753. DOI: 10.1590/s0103-50532002000600004.

    CAS  Google Scholar 

  • Gaudio, A. C., & Zandonade, E. (2001). Proposition, validation and analysis of QSAR models. Quimica Nova, 24, 658–671. DOI: 10.1590/s0100-40422001000500013.

    Article  CAS  Google Scholar 

  • Golbraikh, A., & Tropsha, A. (2002). Beware of q 2! Journal of Molecular Graphics and Modelling, 20, 269–276. DOI: 10.1016/s1093-3263(01)00123-1.

    Article  CAS  Google Scholar 

  • Golbraikh, A., Shen, M., Xiao, Z., Xiao, Y. D., Lee, K. H. & Tropsha, A. (2003). Rational selection of training and test set for the development of validated QSAR models. Journal of Computer-Aided Molecular Design, 17, 241–253. DOI: 10.1023/a:1025386326946.

    Article  CAS  Google Scholar 

  • González, M. P., Terán, C., Teijeira, M., & González-Moa, M. J. (2005). GETAWAY descriptors to predicting A2A adenosine receptors agonists. European Journal of Medicinal Chemistry, 40, 1080–1086. DOI: 10.1016/j.ejmech.2005.04.014.

    Article  Google Scholar 

  • Gramatica, P. (2007). Principles of QSAR models validation: internal and external. QSAR & Combinatorial Science, 26, 694–701. DOI: 10.1002/qsar.200610151.

    Article  CAS  Google Scholar 

  • Gupta, R. A., Gupta, A. K., Soni, L. K., & Kaskhedikar, S. G. (2009). Study of physicochemical properties-antitubercular activity relationship of naphthalene-1,4-dione analogs: A QSAR approach. Chemical Papers, 63, 723–730. DOI: 10.2478/s11696-009-0080-0.

    Article  CAS  Google Scholar 

  • Hernández, N., Kiralj, R., Ferreira, M. M. C., & Talavera, I. (2009). Critical comparative analysis, validation and interpretation of SVM and PLS regression models in a QSAR study on HIV-1 protease inhibitors. Chemometrics and Intelligent Laboratory Systems, 98, 65–77. DOI: 10.1016/j.chemolab.2009.04.012.

    Article  Google Scholar 

  • Horimoto, T., & Kawaoka, T. (2001). Pandemic threat posed by avian influenza A viruses. Clinical Microbiology Reviews, 14, 129–149. DOI: 10.1128/cmr.14.1.129-149.2001.

    Article  CAS  Google Scholar 

  • HyperCube (2002). HyperChem 7.0 [computer software]. Gainesville, FL, USA: HyperCube, Inc.

    Google Scholar 

  • Infometrix (2007). Pirouette 4 [computer software]. Bothell, WA, USA: Infometrix, Inc.

    Google Scholar 

  • Karelson, M., Lobanov, V. S., & Katritzky, A. R. (1996). Quantum-chemical descriptors in QSAR/QSPR studies. Chemical Reviews, 96, 1027–1043. DOI: 10.1021/cr950202r.

    Article  CAS  Google Scholar 

  • Katritzky, A. R., Petrukhin, R., Tatham, D., Basak, S., Benfenati, E., Karelson, M., & Maran, U. (2001). Interpretation of quantitative structure-property and -activity relationships. Journal of Chemical Information and Computer Science, 41, 679–685. DOI: 10.1021/ci000134w.

    CAS  Google Scholar 

  • Kiralj, R., & Ferreira, M. M. C. (2009). Basic validation procedures for regression models in QSAR and QSPR studies: theory and application. Journal of Brazilian Chemical Society, 20, 770–787. DOI: 10.1590/s0103-50532009000400021.

    Article  CAS  Google Scholar 

  • Liu, P. X., & Long, W. (2009). Current mathematical methods used in QSAR/QSPR studies. International Journal of Molecular Science, 10, 1978–1998. DOI: 10.3390/ijms10051978.

    Article  CAS  Google Scholar 

  • Luan, F., Melo, A., Borges, F., & Cordeiro, M. N. D. S. (2011). Affinity prediction on A3 adenosine receptor antagonists: the chemometric approach. Bioorganic & Medicinal Chemistry, 19, 6853–6859. DOI: 10.1016/j.bmc.2011.09.032.

    Article  CAS  Google Scholar 

  • Marshall, S. J. (2005). Governments in a dilemma over bird flu. Retrieved November 20, 2012, from http://www.who.int/bulletin/volumes/83/5/infocus0505/en

  • Martins, J. P. A., & Ferreira, M. M. C. (2010). QSAR modeling [computer software]. Campinas, SP, Brazil: Unicamp.

    Google Scholar 

  • Masoodi, T. A., Shaik, N. A., Shafi, G., Munshi, A., Ahamed, A. K., & Masoodi, Z. A. (2012). Comparative analysis of hemagglutinin of 2009 H1N1 influenza A pandemic indicates its evolution to 1918 H1N1 pandemic. Gene, 491, 200–204. DOI: 10.1016/j.gene.2011.09.024.

    Article  CAS  Google Scholar 

  • Melagraki, G., Afantitis, A., Sarimveis, H., Koutentis, P. A., Markopolus, J., & Igglessi-Markopoulou, O. (2007). Optimization of biaryl piperidine and 4-amino-2-biarylurea MCH1 receptor antagonists using QSAR modeling, classification techniques and virtual screening. Journal of Computer-Aided Molecular Design, 21, 251–267. DOI: 10.1007/s10822-007-9112-4.

    Article  CAS  Google Scholar 

  • Molfetta, F. A., Bruni, A. T., Rosseli, F. P., & da Silva, A. B. F. (2007). A partial least squares and principal component regression study of quinone compounds with trypanocidal activity. Structural Chemistry, 18, 49–57. DOI: 10.1007/s11224-006-9120-3.

    Article  CAS  Google Scholar 

  • OECD (2007). Guidance document on the validation of (quantitative) structure-activity relationships [(Q)SAR] models. Retrieved November 20, 2012, from http://search.oecd.org/officialdocuments/displaydocumentpdf/?doclanguage=en&cote=env/jm/mono(2007)2

  • Ojha, P. K., Mitra, I., Das, R. N., & Roy, K. (2011). Further exploring r 2m metrics for validation of QSPR models. Chemometrics and Intelligent Laboratory Systems, 107, 194–205. DOI: 10.1016/j.chemolab.2011.03.011.

    Article  CAS  Google Scholar 

  • Put, R., Xu, Q. S., Massart, D. L., & Heyden, Y. V. (2004). Multivariate adaptive regression splines (MARS) in chromatographic quantitative structure-retention relationship studies. Journal of Chromatography A, 1055, 11–19. DOI: 10.1016/j.chroma.2004.07.112.

    Article  CAS  Google Scholar 

  • Ribeiro, F. A., & Ferreira, M. M. C. (2003). QSPR models of boiling point, octanol-water partition coefficient and retention time index of polycyclic aromatic hydrocarbons. Journal of Molecular Structure: THEOCHEM, 663, 109–126. DOI: 10.1016/j.theochem.2003.08.107.

    Article  Google Scholar 

  • Rizzo, C., Ajelli, M., Merler, S., Pugliese, A., Barbetta, I., Salmaso, S., & Manfredi, P. (2011). Epidemiology and transmission dynamics of the 1918-19 pandemic influenza in Florence, Italy. Vaccine, 29(S2), B27–B32. DOI: 10.1016/j.vaccine.2011.02.049.

    Article  Google Scholar 

  • Roy, P. P., Paul, S., Mitra, I., & Roy, K. (2009). On two novel parameters for validation of predictive QSAR models. Molecules, 14, 1660–1701. DOI: 10.3390/molecules15010604.

    Article  CAS  Google Scholar 

  • Sharma, B. K., Singh, P., Pilania, P., Sarbhai, K., & Prabhakar, Y. S. (2011). CP-MLR/PLS directed QSAR study on apical sodium-codependent bile acid transporter inhibition activity of benzothiepines. Molecular Diversity, 15, 135–147. DOI: 10.1007/s11030-009-9220-2.

    Article  CAS  Google Scholar 

  • Silla, J. M., Nunes, C. A., Cormanich, R. A., Guerreiro, M. C., Ramalho, T. C., & Freitas, M. P. (2011). MIA-QSPR and effect of variable selection on the modeling of kinetic parameters related to activities of modified peptides against dengue type 2. Chemometrics and Intelligent Laboratory Systens, 108, 146–149. DOI: 10.1016/j.chemolab.2011.06.009.

    Article  CAS  Google Scholar 

  • Silva, P. (2010). Farmacologia (8th ed.). Rio de Janeiro, RJ, Brazil: Guanabara Koogan.

    Google Scholar 

  • Stanton, D. T. (2003). On the physical interpretation of QSAR models. Journal of Chemical Information and Computer Science, 43, 1423–1433. DOI: 10.1021/ci0340658.

    CAS  Google Scholar 

  • Teófilo, R. F., Martins, J. P. A., & Ferreira, M. M. C. (2009). Sorting variables by using informative vectors as a strategy for feature selection in multivariate regression. Journal of Chemometrics, 23, 32–48. DOI: 10.1002/cem.1192.

    Article  Google Scholar 

  • Tetko, I. V., Gasteiger, J., Todeschini, R., Mauri, A., Livingstone, D., Ertl, P., Palyulin, V. A., Radchenko, E. V., Zefirov, N. S., Makarenko, A. S., Tanchuk, V. Y., & Prokopenko, V. V. (2005). Virtual computational chemistry laboratory — design and description. Journal of Computer-Aided Molecular Design, 19, 453–463. DOI: 10.1007/s10822-005-8694-y.

    Article  CAS  Google Scholar 

  • Todeschini, R., Consonni, V., Mauri, A., & Pavan, M. (2003). Dragon Web Version 3.0 [computer software]. Milano, Italia: Talete, Srl.

    Google Scholar 

  • Todeschini, R. C., & Consonni, V. (2009). Molecular descriptors for chemoinformatics (2th ed.). Weinheim, Germany: Wiley-VCH.

    Book  Google Scholar 

  • Trilla, A., Trilla, G., & Daer, C. (2005). The 1918 “Spanish flu” in Spain. Clinical Infectious Disease, 47, 668–673. DOI: 10.1086/590567.

    Article  Google Scholar 

  • Wanderley, M. R., Sampaio, G. P., de Negreiros, M. A. M. P., & Casseb, G. B. (2011). Epidemiologial description of Influenza H1N1 cases in terciary medical service Rio Branco’s Urgency and Emergency Hospital. Revista da Sociedade Brasileira de Clínica Médica, 9, 279–282.

    Google Scholar 

  • Weininger, D. (1988). SMILES, a chemical language and information system. 1. Introduction to methodology and encoding rules. Journal of Chemical Information and Computer Science, 28, 31–36. DOI: 10.1021/ci00057a005.

    CAS  Google Scholar 

  • Wilson, J. M., Iannarone, M., & Wang, C. (2009). Media reporting of the emergence of the 1968 influenza pandemic in Hong Kong: Implications for modern-day situational awareness. Disaster Medicine and Public Health Preparedness, 3, S148–S153.

    Article  Google Scholar 

  • Wold, S. (1995). PLS for multivariate linear modeling. In H. van de Waterbeemd (Ed.), Chemometric methods in molecular design (pp. 195–218). Weinheim, Germany: Wiley-VCH. DOI: 10.1002/9783527615452.

    Google Scholar 

  • Wold, S., & Eriksson, L. (1995). Validation tools. In H. van de Waterbeemd (Ed.), Chemometric methods in molecular design (pp. 309–318). Weinheim, Germany: Wiley-VCH. DOI: 10.1002/9783527615452.

    Chapter  Google Scholar 

  • Wold, S., Sjöström, M., & Eriksson, L. (2001). PLS-regression: a basic tool of chemometrics. Chemometrics and Intelligent Laboratory Systems, 58, 109–130. DOI: 10.1016/s0169-7439(01)00155-1.

    Article  CAS  Google Scholar 

  • World Health Organization (2009a). Pandemic (H1N1) 2009 — update 80. Retrieved November 20, 2012, from: http://www.who.int/csr/don/20091223/en

  • World Health Organization (2009b). WHO recommendations on pandemic (H1N1) 2009 vaccines. Retrieved November 20, 2012, from http://www.who.int/csr/disease/swineflu/notes/h1n1vaccine20090713/en/index.html

  • World Health Organization (2011). Standardization of terminology of the pandemic A(H1N1)2009 virus. Retrieved November 20, 2012, from http://www.who.int/influenza/gisrslaboratory/terminology_ah1n1pdm09/en/index.html

  • Xu, X. J., Zhu, X. Y., Dwek, R. A., Stevens, J., & Wilson, I. A. (2008). Structural characterization of the 1918 influenza virus H1N1 neuraminidase. Journal of Virology, 82, 10493–10501. DOI: 10.1128/jvi.00959-08.

    Article  CAS  Google Scholar 

  • Zhang, J., Wang, Q., Fang, H., Xu, W. F., Liu, A., & Du, G. H. (2008). Design, synthesis, inhibitory activity, and SAR studies of hydrophobic p-aminosalicylic acid derivatives as neuraminidase inhibitors. Bioorganic & Medicinal Chemistry, 16, 3839–3847. DOI: 10.1016/j.bmc.2008.01.036.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eduardo Borges de Melo.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hartmman, A.P., Jornada, D.H. & de Melo, E.B. A new, fully validated and interpreted quantitative structure-activity relationship model of p-aminosalicylic acid derivatives as neuraminidase inhibitors. Chem. Pap. 67, 556–567 (2013). https://doi.org/10.2478/s11696-013-0321-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11696-013-0321-0

Keywords

Navigation