Skip to main content
Log in

Comparison of polymeric and ceramic membranes performance in the process of micellar enhanced ultrafiltration of cadmium(II) ions from aqueous solutions

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

A comparison of polymeric and ceramic membranes in the ultrafiltration process was studied and presented. This study was conducted on the separation of cadmium(II) ions, with particular reference to parameters such as hydrodynamic permeability coefficient, membrane fouling, amount of surfactant in the permeate, efficiency, and effectiveness of the process. The effect of ionic (SDS) and non-ionic (Rofam 10) surfactants or their mixture was investigated. The hydrodynamic permeability coefficient of the ceramic membrane was found to be much lower in comparison to those of the polymeric ones (1.69 × 10−7 m3 h−1 m−2 Pa−1, 5.66 × 10−7 m3 h−1 m−2 Pa−1, and 9.26 × 10−7 m3 h−1 m−2 Pa−1 for ceramic, CA, and PVDF, respectively). However, filtration of the surfactants solutions did not cause permanent blocking of pores and the surface of the ceramic membrane in contrast to the polymeric ones. No significant differences in surfactants permeation through the membranes tested were observed. Concentration of the surfactant in the permeate was lower than 1 CMC for the Rofam 10 solution and exceeded the CMC by about 40 % for the SDS solution. Better separation properties of polymer membranes for the separation of cadmium(II) ions from micellar systems were identified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Barredo-Damas, S., Alcaina-Miranda, M. I., Bes-Piá, A., Iborra-Clar, M. I., Iborra-Clar, A., & Mendoza-Roca, J. A. (2010). Ceramic membrane behavior in textile wastewater ultrafiltration. Desalination, 250, 623–628. DOI: 10.1016/j.desal.2009.09.037.

    Article  CAS  Google Scholar 

  • Basile, A., & Gallucci, F. (Eds.) (2011). Membranes for membrane reactors: Preparation, optimization and selection. Chichester, UK: Wiley.

    Book  Google Scholar 

  • Cañizares, P., Pérez, A., Camarillo, R., & Mazarro, R. (2008). Simultaneous recovery of cadmium and lead from aqueous effluents by a semi-continuous laboratory-scale polymer enhanced ultrafiltration process. Journal of Membrane Science, 320, 520–527. DOI: 10.1016/j.memsci.2008.04.043.

    Article  Google Scholar 

  • Chen, H. L., & Juang, R. S. (2008). Extraction of surfactin from fermentation broth with n-hexane in microporous PVDF hollow fibers: Significance of membrane adsorption. Journal of Membrane Science, 325, 599–604. DOI: 10.1016/j.memsci.2008.08.017.

    Article  CAS  Google Scholar 

  • Dunn, R. O., Jr., Scamehorn, J. F., & Christian, S. D. (1985). Use the micellar-enhanced ultrafiltration to remove dissolved organics from aqueous wastes. Separation Science and Technology, 20, 257–284. DOI: 10.1080/01496398508060679.

    Article  CAS  Google Scholar 

  • Eichler, W. (1989). Trucizny w naszym pożywieniu (Poisons in our food). Warszawa: Państwowy Zakład Wydawnictw Lekarskich.

    Google Scholar 

  • Elimelech, M., Zhu, X. H., Childress, A. E., & Hong, S. K. (1997). Role of membrane surface morphology in colloidal fouling of cellulose acetate and composite aromatic polyamide reverse osmosis membranes. Journal of Membrane Science, 127, 101–109. DOI: 10.1016/s0376-7388(96)00351-1.

    Article  CAS  Google Scholar 

  • Ennigrou, D. J., Gzara, L., Ben Romdhane, M. R., & Dhahbi, M. (2009). Cadmium removal from aqueous solutions by polyelectrolyte enhanced ultrafiltration. Desalination, 246, 363–369. DOI: 10.1016/j.desal.2008.04.053.

    Article  Google Scholar 

  • Huang, J. H., Zeng, G. M., Fang, Y. Y., Qu, Y. H., & Li, X. (2009). Removal of cadmium ions using micellarenhanced ultrafiltration with mixed anionic-nonionic surfactants. Journal of Membrane Science, 326, 303–309. DOI: 10.1016/j.memsci.2008.10.013.

    Article  CAS  Google Scholar 

  • Jönsson, C., & Jönsson, A. S. (1995). Influence of the membrane material on the adsorptive fouling of ultrafiltration membranes. Journal of Membrane Science, 108, 79–87. DOI: 10.1016/0376-7388(95)00144-x.

    Article  Google Scholar 

  • Juang, R. S., Xu, Y. Y., & Chen, C. L. (2003). Separation and removal of metal ions from dilute solutions using micellarenhanced ultrafiltration. Journal of Membrane Science, 218, 257–267. DOI: 10.1016/s0376-7388(03)00183-2.

    Article  CAS  Google Scholar 

  • Keurentjes, J. F. T., Harbrecht, J. G., Brinkman, D., Hanemaaijer, J. H., Cohen Stuart, M. A., & van’t Riet, K. (1989). Hydrophobicity measurements of microfiltration and ultrafiltration membranes. Journal of Membrane Science, 47, 333–344. DOI: 10.1016/s0376-7388(00)83084-7.

    Article  CAS  Google Scholar 

  • Kurniawan, T. A., Chan, G. Y. S., Lo, W. H., & Babel, S. (2006). Physico-chemical treatment techniques for wastewater laden with heavy metals. Chemical Engineering Journal, 118, 83–98. DOI: 10.1016/j.cej.2006.01.015.

    Article  CAS  Google Scholar 

  • Li, X., Zeng, G. M., Huang, J.H., Zhang, C., Fang, Y.Y., Qu, Y. H., Luo, F., Lin, D., & Liu, H. L. (2009). Recovery and reuse of surfactant SDS from a MEUF retentate containing Cd2+ or Zn2+ by ultrafiltration. Journal of Membrane Science, 337, 92–97. DOI: 10.1016/j.memsci.2009.03.030.

    Article  CAS  Google Scholar 

  • Palencia, M., Rivas, B. L., & Pereira, E. (2009). Metal ion recovery by polymer-enhanced ultrafiltration using poly(vinyl sulfonic acid): Fouling description and membrane-metal ion interaction. Journal of Membrane Science, 345, 191–200. DOI: 10.1016/j.memsci.2009.08.044.

    Article  CAS  Google Scholar 

  • Park, H. S., & Choi, H. C. (2011). As(III) removal by hybrid reactive membrane process combined with ozonation. Water Research, 45, 1933–1940. DOI: 10.1016/j.watres.2010.12.024.

    Article  CAS  Google Scholar 

  • Rivas, B. L., Aguirre, M. C., & Pereira, E. (2007). Cationic water-soluble polymers with the ability to remove arsenate through an ultrafiltration technique. Journal of Applied Polymer Science, 106, 89–94. DOI: 10.1002/app.26499.

    Article  CAS  Google Scholar 

  • Romano Espinosa, D. C., Moura Bernardes, A., & Soares Tenório, J. A. (2004). An overview on the current processes for recycling of batteries. Journal of Power Sources, 135, 311–319. DOI: 10.1016/j.jpowsour.2004.03.083.

    Article  Google Scholar 

  • Sadegh Safarzadeh, M., Bafghi, M. S., Moradkhani, D., & Ojaghi Ilkhchi, M. (2007). A review on hydrometallurgical extraction and recovery of cadmium from various resources. Minerals Engineering, 20, 211–220. DOI: 10.1016/j.mineng.2006.07.001.

    Article  CAS  Google Scholar 

  • Scamehorn, J. F., Ellington, R. T., Christian, S. D., Penney, B. W., Dunn, R. O., & Bhat, S. N. (1986). Removal of multivalent metal cations from water using micellar-enhanced ultrafiltration. AIChE Symposium Series, 82(250), 48–58.

    CAS  Google Scholar 

  • Seymour, W. B. (1940). The preparation of cellophane membranes of graded permeability. The Journal of Biological Chemistry, 134, 701–707.

    CAS  Google Scholar 

  • Staszak, K., Wieszczycka, K., & Burmistrzak, P. (2011). Removal of cadmium(II) ions from chloride solutions by Cyanex 301 and Cyanex 302. Separation Science and Technology, 46, 1495–1502. DOI: 10.1080/01496395.2011.563258.

    Article  CAS  Google Scholar 

  • Staszak, K., Konopczyńska, B., & Prochaska, K. (2012). Micellar enhanced ultrafiltration as a method of removal of chromium(III) ions from aqueous solutions. Separation Science and Technology, 47, 802–810. DOI: 10.1080/01496395.2011.644613.

    Article  CAS  Google Scholar 

  • Tounissou, P., Hebrant, M., & Tondre, C. (1996). On the behavior of micellar solutions in tangential ultrafiltration using mineral membranes. Journal of Colloid and Interface Science, 183, 491–497. DOI: 10.1006/jcis.1996.0572.

    Article  CAS  Google Scholar 

  • Yenphan, P., Chanachai, A., & Jiraratananon, R. (2010). Experimental study on micellar-enhanced ultrafiltration (MEUF) of aqueous solution and wastewater containing lead ion with mixed surfactants. Desalination, 253, 30–37. DOI: 10.1016/j.desal.2009.11.040.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katarzyna Staszak.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Staszak, K., Karaś, Z. & Jaworska, K. Comparison of polymeric and ceramic membranes performance in the process of micellar enhanced ultrafiltration of cadmium(II) ions from aqueous solutions. Chem. Pap. 67, 380–388 (2013). https://doi.org/10.2478/s11696-012-0280-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11696-012-0280-x

Keywords

Navigation