Skip to main content
Log in

Attrition of dolomitic lime in a fluidized-bed reactor at high temperatures

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

Results of an experimental study on the rate of attrition of lime catalyst/sorbent in a high-temperature, turbulent fluidized bed with quartz sand are presented. Batch measurements were conducted at 850°C in an electrically heated gasification reactor of the inner diameter of 5.1 cm with three samples of high-grade dolomitic lime of the particle size 450 μm, 715 μm, and 1060 μm, respectively. In addition to the influence of the particle size, the effect of operating (elapsed) time was investigated at different superficial gas velocities. Assuming that the attrition rate decreases exponentially with time, a simple mechanistic model, enabling the correlation of the measured experimental data, was developed. The course of the lime particles attrition is described as a function of the elapsed time, excess gas velocity, and particle size. The presented approach and the results might be applicable for the attrition of high-grade dolomitic lime, particularly in fluidized gasification of biomass.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abu El-Rub, Z., Bramer, E. A., & Brem, G. (2004). Review of catalysts for tar elimination in biomass gasification processes. Industrial & Engineering Chemistry Research, 43, 6911–6919. DOI: 10.1021/ie0498403.

    Article  CAS  Google Scholar 

  • Ayazi Shamlou, P., Liu, Z., & Yates, J. G. (1990). Hydrodynamic influences on particle breakage in fluidized beds. Chemical Engineering Science, 45, 809–817. DOI: 10.1016/0009-2509(90)85004-w.

    Article  Google Scholar 

  • Boynton, R. S. (1980). Chemistry and technology of lime and limestone (2nd ed.). New York, NY, USA: Wiley.

    Google Scholar 

  • Chen, Z. X., Grace, J. R., & Lim, C. J. (2008). Limestone particle attrition and size distribution in a small circulating fluidized bed. Fuel, 87, 1360–1371. DOI:10.1016/j.fuel.2007.06.012.

    Article  CAS  Google Scholar 

  • Cook, J. L., Khang S. J., Lee, S. K., & Keener, T. C. (1996). Attrition and changes in particle size distribution of lime sorbents in a circulating fluidized bed absorber. Powder Technology, 89, 1–8. DOI: 10.1016/s0032-5910(96)03115-4.

    Article  CAS  Google Scholar 

  • Corella, J., Toledo, J. M., & Aznar, M. P. (2002). Improving the modeling of the kinetics of the catalytic tar elimination in biomass gasification. Industrial & Engineering Chemistry Research, 41, 3351–3356. DOI: 10.1021/ie0110336.

    Article  CAS  Google Scholar 

  • Di Benedetto, A., & Salatino, P. (1998). Modeling attrition of limestone during calcination and sulfation in a fluidized bed reactor. Powder Technology 95, 119–128. DOI: 10.1016/s0032-5910(97)03327-5.

    Article  Google Scholar 

  • Gil, J., Caballero, M. A., Martin, J. A., Aznar, M. P., & Corella, J. (1999). Biomass gasification with air in a fluidized bed: Effect of the in-bed use of dolomite under different operation conditions. Industrial & Engineering Chemistry Research, 38, 4226–4235. DOI: 10.1021/ie980802r.

    Article  CAS  Google Scholar 

  • Hartman, M., & Svoboda, K. (1986). Predicting the effect of operating temperature on the minimum fluidization velocity. Industrial & Engineering Chemistry Process Design and Development, 25, 649–654. DOI: 10.1021/i200034a009.

    Article  CAS  Google Scholar 

  • Hartman, M., Svoboda, K., & Trnka, O. (1991). Unsteady-state retention of sulfur dioxide in a fluidized bed with continual feeding of lime and limestone. Industrial & Engineering Chemistry Research, 30, 1855–1864. DOI: 10.1021/ie00056a 027.

    Article  CAS  Google Scholar 

  • Hartman, M., & Martinovsky, A. (1992). Thermal stability of the magnesian and calcareous compounds for desulfurization processes. Chemical Engineering Communications, 111, 149–160. DOI: 10.1080/00986449208935985.

    Article  CAS  Google Scholar 

  • Hartman, M., & Coughlin, R. W. (1993). On the incipient fluidized state of solid particles. Collection of Czechoslovak Chemical Communications, 58, 1213–1241. DOI: 10.1135/cccc19931213.

    Article  CAS  Google Scholar 

  • Hartman, M., & Yates, J. G. (1993). Free-fall of solid particles through fluids. Collection of Czechoslovak Chemical Communications, 58, 961–982. DOI: 10.1135/cccc19930961.

    Article  CAS  Google Scholar 

  • Hartman, M., Trnka, O., & Svoboda, K. (1994a). Free settling of nonspherical particles. Industrial & Engineering Chemistry Research, 33, 1979–1983. DOI: 10.1021/ie00032a012.

    Article  CAS  Google Scholar 

  • Hartman, M., Trnka, O., & Vesely, V. (1994b). Thermal dehydration of magnesium hydroxide and sintering of nascent magnesium oxide. AIChE Journal, 40, 536–542. DOI: 10.1002/aic.690400314.

    Article  CAS  Google Scholar 

  • Hartman, M., Trnka, O., & Svoboda, K. (2000). Fluidization characteristics of dolomite and calcined dolomite particles. Chemical Engineering Science, 55, 6269–6274. DOI: 10.1016/S0009-2509(00)00409-7.

    Article  CAS  Google Scholar 

  • Hartman, M., Trnka, O., & Pohořelý, M. (2007). Minimum and terminal velocities in fluidization of particulate ceramsite at ambient and elevated temperature. Industrial & Engineering Chemistry Research, 46, 7260–7266. DOI: 10.1021/ie0615685.

    Article  CAS  Google Scholar 

  • Hartman, M., Trnka, O., & Svoboda, K. (2009). Use of presure fluctuations to determine online the regime of gas-solids suspensions from incipient fluidization to transport. Industrial & Engineering Chemistry Research, 48, 6830–6835. DOI: 10.1021/ie900055x.

    Article  CAS  Google Scholar 

  • Hartman, M., Trnka, O., Pohořelý, M., & Svoboda, K. (2010). High-temperature reaction in the freeboard region above a bubbling fluidized bed. Industrial & Engineering Chemistry Research, 49, 2672–2680. DOI: 10.1021/ie901760f.

    Article  CAS  Google Scholar 

  • Higman, C., & van der Burgt, M. (2008). Gasification (2nd ed.). Amsterdam, The Netherlands: Elsevier.

    Google Scholar 

  • Knoef, H. A.M. (Ed.) (2005). Handbook of biomass gasification. Enschede, The Netherlands: BTG biomass technology group.

    Google Scholar 

  • Lee, S. K., Jiang, X. L., Keener, T. C., & Khang, S. J. (1993). Attrition of lime sorbents during fluidization in a circulating fluidized bed absorber. Industrial & Engineering Chemistry Research, 32, 2758–2766. DOI: 10.1021/ie00023a044.

    Article  CAS  Google Scholar 

  • Montagnaro, F., Salatino, P., & Scala, F. (2010). The influence of temperature on limestone sulfation and attrition under fluidized bed combustion conditions. Experimental Thermal and Fluid Science, 34, 352–358. DOI: 10.1016/j.expthermflusci.2009.10.013.

    Article  CAS  Google Scholar 

  • Oates, J. A. H. (1998). Lime and limestone: Chemistry and technology, production and uses. Weinheim, Germany: Wiley-VCH.

    Google Scholar 

  • Pohořelý, M., Svoboda, K., & Hartman, M. (2004). Feeding small quantities of particulate solids. Powder Technology, 142, 1–6. DOI: 10.1016/j.powtec.2004.03.005.

    Article  Google Scholar 

  • Saastamoinen, J. J. (2007). Particle-size optimization for SO2 capture by limestone in a circulating fluidized bed. Industrial & Engineering Chemistry Research, 46, 7308–7316. DOI: 10.1021/ie070567p.

    Article  CAS  Google Scholar 

  • Scala, F., Cammarota, A., Chirone, R., & Salatino, P. (1997). Comminution of limestone during batch fluidized-bed calcination and sulfation. AIChE Journal, 43, 363–373. DOI: 10.1002/aic.690430210.

    Article  CAS  Google Scholar 

  • Scala, F., & Salatino, P. (2003). Dolomite attrition during fluidized-bed calcination and sulfation. Combustion Science and Technology, 175, 2201–2216. DOI: 10.1080/714923284.

    Article  CAS  Google Scholar 

  • Scala, F., Montagnaro, F., & Salatino, P. (2007). Attrition of limestone by impact loading in fluidized beds. Energy & Fuels, 21, 2566–2572. DOI: 10.1021/ef0700580.

    Article  CAS  Google Scholar 

  • Scala, F., & Salatino, P. (2010). Limestone fragmentation and attrition during fluidized bed oxyfiring. Fuel, 89, 827–832. DOI: 10.1016/j.fuel.2009.03.024.

    Article  CAS  Google Scholar 

  • Sutton, D., Kelleher, B., & Ross, J. R. H. (2001). Review of literature on catalysts for biomass gasification. Fuel Processing Technology, 73, 155–173. DOI: 10.1016/s0378-3820(01)00208-9.

    Article  CAS  Google Scholar 

  • Yao, X., Zhang, H., Yang, H. R., Liu, Q., Wang, J. W., & Yue, G. X. (2010). An experimental study on the primary fragmentation and attrition of limestones in a fluidized bed. Fuel Processing Technology, 91, 1119–1124. DOI: 10.1016/j.fuproc.2010.03.025.

    Article  CAS  Google Scholar 

  • Zheng, J., Yates, J. G., & Rowe, P. N. (1982). A model for desulphurization with limestone in a fluidised coal combustor. Chemical Engineering Science, 37, 167–174. DOI: 10.1016/0009-2509(82)80151-6.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miloslav Hartman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hartman, M., Svoboda, K., Pohořelý, M. et al. Attrition of dolomitic lime in a fluidized-bed reactor at high temperatures. Chem. Pap. 67, 164–172 (2013). https://doi.org/10.2478/s11696-012-0267-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11696-012-0267-7

Keywords

Navigation