Skip to main content
Log in

Effect of hyamine on electrochemical behaviour of brass alloy in HNO3 solution

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

The electrochemical behaviours of a brass alloy in 0.1 M nitric acid, including the hyamine inhibitor with concentrations between 2.5 × 10−4 M and 1.0 × 10−5 M, were studied. For this purpose, potentiodynamic polarisation, electrochemical impedance spectroscopy (EIS), linear polarisation resistance (LPR) techniques, and flame atomic absorption spectroscopy (FAAS) were utilised. The inhibitor molecules adsorbed on the brass surface were calculated to be in good agreement with the Langmuir adsorption isotherm and the standard free enthalpy of adsorption (ΔG ads ). Hyamine effectively improved the corrosion inhibition of brass and acted as a mixed-type inhibitor on alloy surfaces. The surface morphology of the alloy was also clarified by optical microscopic and SEM techniques. A theoretical study of the corrosion inhibition efficiency of hyamine molecule was carried out using density functional theory (DFT) at the B3LYP/6-311G(d,p) basis set level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abboud, Y., Abourriche, A., Saffaj, T., Berrada, M., Charrouf, M., Bennamara, A., & Hannache, H. (2009). A novel azo dye, 8-quinolinol-5-azoantipyrine as corrosion inhibitor for mild steel in acidic media. Desalination, 237, 175–189. DOI:10.1016/j.desal.2007.12.031.

    Article  CAS  Google Scholar 

  • Abdallah, M., Al-Agez, M., & Fouda, A. S. (2009). Phenylhydrazone derivatives as corrosion inhibitors for -α-brass in hydrochloric acid solutions. International Journal of Electrochemical Science, 4, 336–352.

    CAS  Google Scholar 

  • Abd El Meguid, E. A., & Awad, N. K. (2009). Electrochemical pitting corrosion behaviour of α-brass in LiBr containing solutions. Corrosion Science, 51, 1134–1139. DOI: 10.1016/j.corsci.2009.02.019.

    Article  CAS  Google Scholar 

  • Abed, Y., Kissi, M., Hammouti, B., Taleb, M., & Kertit, S. (2004). Peptidic compound as corrosion inhibitor for brass in nitric acid solution. Progress in Organic Coatings, 50, 144–147. DOI:10.1016/j.porgcoat.2004.02.001.

    Article  CAS  Google Scholar 

  • Ahamad, I., Prasad, R., & Quraishi, M. A. (2010). Adsorption and inhibitive properties of some new Mannich bases of Isatin derivatives on corrosion of mild steel in acidic media. Corrosion Science, 52, 1472–1481. DOI:10.1016/j.corsci.2010.01.015.

    Article  CAS  Google Scholar 

  • Alfantazi, A. M., Ahmed, T. M., & Tromans, D. (2009). Corrosion behavior of copper alloys in chloride media. Materials & Design, 30, 2425–2430. DOI:10.1016/j.matdes.2008.10.015.

    Article  CAS  Google Scholar 

  • Aljourani, J., Raeissi, K., & Golozar, M. A. (2009). Benzimidazole and its derivatives as corrosion inhibitors for mild steel in 1M HCl solution. Corrosion Science, 51, 1836–1843. DOI:10.1016/j.corsci.2009.05.011.

    Article  CAS  Google Scholar 

  • Aljourani, J., Golozar, M. A., & Raeissi, K. (2010). The inhibition of carbon steel corrosion in hydrochloric and sulfuric acid media using some benzimidazole derivatives. Materials Chemistry and Physics, 121, 320–325. DOI: 10.1016/j.matchemphys.2010.01.040.

    Article  CAS  Google Scholar 

  • Allam, N. K. (2007). Thermodynamic and quantum chemistry characterization of the adsorption of triazole derivatives during Muntz corrosion in acidic and neutral solutions. Applied Surface Science, 253, 4570–4577. DOI:10.1016/j.apsusc.2006.10.008.

    Article  CAS  Google Scholar 

  • Asefi, D., Arami, M., & Mahmoodi, N. M. (2010). Electrochemical effect of cationic gemini surfactant and halide salts on corrosion inhibition of low carbon steel in acid medium. Corrosion Science, 52, 794–800. DOI:10.1016/j.corsci.2009.10.039.

    Article  CAS  Google Scholar 

  • Bayol, E., Kayakırılmaz, K., & Erbil, M. (2007). The inhibitive effect of hexamethylenetetramine on the acid corrosion of steel. Materials Chemistry and Physics, 104, 74–82. DOI:10.1016/j.matchemphys.2007.02.073.

    Article  CAS  Google Scholar 

  • Bayol, E., Gürten, T., Gürten, A. A., & Erbil, M. (2008). Interactions of some Schiff base compounds with mild steel surface in hydrochloric acid solution. Materials Chemistry and Physics, 112, 624–630. DOI:10.1016/j.matchemphys.2008.06.012.

    Article  CAS  Google Scholar 

  • Becke, A. D. (1993). Density-functional thermochemistry. III. The role of exact exchange. The Journal of Chemical Physics, 98, 5648–5652. DOI: 10.1063/1.464913.

    Article  CAS  Google Scholar 

  • Behpour, M., Ghoreishi, S. M., Soltani, N., & Salavati-Niasari, M. (2009). The inhibitive effect of some bis-N,S-bidentate Schiff bases on corrosion behaviour of 304 stainless steel in hydrochloric acid solution. Corrosion Science, 51, 1073–1082. DOI:10.1016/j.corsci.2009.02.011.

    Article  CAS  Google Scholar 

  • Elayyachy, M., Elkodadi, M., Aouniti, A., Ramdani, A., Hammouti, B., Malek, F., & Elidrissi, A. (2005). New bipyrazole derivatives as corrosion inhibitors for steel in hydrochloric acid solutions. Materials Chemistry and Physics, 93, 281–285. DOI:10.1016/j.matchemphys.2005.03.059.

    Article  CAS  Google Scholar 

  • Erbil, M. (1988). The determination of corrosion rates by analysis of AC impedance diagrams. Chimica Acta Turcica, 1, 59–70.

    Google Scholar 

  • Fontana, M. G., & Greene, N. D. (1967). Corrosion engineering (pp. 270). New York, NY, USA: McGraw-Hill.

    Google Scholar 

  • Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, G., Sonnenberg, J. L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J. A., Jr., Peralta, J. E., Ogliaro, F., Bearpark, M., Heyd, J. J., Brothers, E., Kudin, K. N., Staroverov, V. N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Rega, N., Millam, J. M., Klene, M., Knox, J. E., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Martin, R. L., Morokuma, K., Zakrzewski, V. G., Voth, G. A., Salvador, P., Dannenberg, J. J., Dapprich, S., Daniels, A. D., Farkas, Ö., Foresman, J. B., Ortiz, J. V., Cioslowski, J., & Fox, D. J. (2009). Gaussian 09, Revision A.1 [computer software]. Wallingford, CT, USA: Gaussian.

    Google Scholar 

  • Fuchs-Godec, R. (2006). The adsorption, CMC determination and corrosion inhibition of some N-alkyl quaternary ammonium salts on carbon steel surface in 2 M H2SO4. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 280, 130–139. DOI:10.1016/j.colsurfa.2006.01.046.

    Article  CAS  Google Scholar 

  • Fuchs-Godec, R. (2007). Inhibitory effect of non-ionic surfactants of the TRITON-X series on the corrosion of carbon steel in sulphuric acid. Electrochimica Acta, 52, 4974–4981. DOI:10.1016/j.electacta.2007.01.075.

    Article  CAS  Google Scholar 

  • Gao, G., & Liang, C. H. (2007). 1,3-Bis-diethylamino-propan-2-ol as volatile corrosion inhibitor for brass. Corrosion Science, 49, 3479–3493. DOI:10.1016/j.corsci.2007.03.030.

    Article  CAS  Google Scholar 

  • Herrag, L., Hammouti, B., Elkadiri, S., Aouniti, A., Jama, C., Vezin, H., & Bentiss, F. (2010). Adsorption properties and inhibition of mild steel corrosion in hydrochloric solution by some newly synthesized diamine derivatives: Experimental and theoretical investigations. Corrosion Science, 52, 3042–3051. DOI:10.1016/j.corsci.2010.05.024.

    Article  CAS  Google Scholar 

  • Horton, R. M. (1970). New metallographic evidence for dezincification of brass by redisposition of copper. Corrosion, 26, 160–163.

    CAS  Google Scholar 

  • Kılınççeker, G. (2008). The effects of acetate ions on electrochemical behaviour of brass in chloride solutions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 329, 112–118. DOI:10.1016/j.colsurfa.2008.07.002.

    Article  Google Scholar 

  • Langenegger, E. E., & Robinson, F. P. A. (1968). Effect of the polarization technique on dezincification rates and the physical structure of dezincified zones. Corrosion-NACE, 24, 411–417.

    CAS  Google Scholar 

  • Langenegger, E. E., & Robinson, F. P. A. (1969). A study of the mechanism of dezincification of brasses. Corrosion-NACE, 25, 59–66.

    CAS  Google Scholar 

  • Li, X. H., Deng, S. D., Fu, H., & Li, T. H. (2009). Adsorption and inhibition effect of 6-benzylaminopurine on cold rolled steel in 1.0 M HCl. Electrochimica Acta, 54, 4089–4098. DOI:10.1016/j.electacta.2009.02.084.

    Article  CAS  Google Scholar 

  • Mahmoud, S. S. (2007). Corrosion inhibition of Cu-Fe alloys in HCl solutions by amphoteric surfactants. Corrosão e Protecção de Materiais, 26, 53–60.

    CAS  Google Scholar 

  • Mihit, M., El Issami, S., Bouklah, M., Bazzi, L., Hammouti, B., Addi, E. A., Salghi, R., & Kertit, S. (2006). The inhibited effect of some tetrazolic compounds towards the corrosion of brass in nitric acid solution. Applied Surface Science, 252, 2389–2395. DOI:10.1016/j.apsusc.2005.04.009.

    Article  CAS  Google Scholar 

  • Milošev, I., Mikić, T. K., & Gaberšček, M. (2006). The effect of Cu-rich sub-layer on the increased corrosion resistance of Cu-xZn alloys in chloride containing borate buffer. Electrochimica Acta, 52, 415–426. DOI:10.1016/j.electacta.2006.05.024.

    Article  Google Scholar 

  • Obot, I. B., Obi-Egbedi, N. O., & Umoren, S. A. (2009). The synergistic inhibitive effect and some quantum chemical parameters of 2,3-diaminonaphthalene and iodide ions on the hydrochloric acid corrosion of aluminium. Corrosion Science, 51, 276–282. DOI:10.1016/j.corsci.2008.11.013.

    Article  CAS  Google Scholar 

  • Özkır, D., & Bayol, E. (2011). Inhibition efficiency of benzidine for mild steel in acidic media. Protection of Metals and Physical Chemistry of Surfaces, 47, 517–527. DOI:10.1134/s2070205111040150.

    Article  Google Scholar 

  • Özkır, D., Kayakırılmaz, K., Bayol, E., Gürten, A. A., & Kandemirli, F. (2012). The inhibition effect of Azure A on mild steel in 1 M HCl. A complete study: Adsorption, temperature, duration and quantum chemical aspects. Corrosion Science, 56, 143–152. DOI:10.1016/j.corsci.2011.11.010.

    Article  Google Scholar 

  • Pchelnikov, A. P., Sitnikov, A. D., Marshakov, I. K., & Losev, V. V. (1981). A study of the kinetics and mechanism of brass dezincification by radiotracer and electrochemical methods. Electrochimica Acta, 26, 591–600. DOI: 10.1016/0013-4686(81)80025-4.

    Article  CAS  Google Scholar 

  • Pickering, H.W. (1970). Formation of new phases during anodic dissolution of Zn-rich Cu-Zn alloys. Journal of the Electrochemical Society, 117, 8–15. DOI: 10.1149/1.2407450.

    Article  CAS  Google Scholar 

  • Pickering, H. W., & Wagner, C. (1967). Electrolytic dissolution of binary alloy containing a noble metal. Journal of the Electrochemical Society, 114, 698–706. DOI: 10.1149/1.2426709.

    Article  CAS  Google Scholar 

  • Pickering, H. W., & Byrne, P. J. (1971). On preferential anodic dissolution of alloys in the low-current region and the nature of the critical potential. Journal of the Electrochemical Society, 118, 209–215. DOI: 10.1149/1.2407969.

    Article  CAS  Google Scholar 

  • Polunin, A. V., Pchelnikov, A. P., Losev, V. V., & Marshakov, I. K. (1982). Electrochemical studies of the kinetics and mechanism of brass dezincification. Electrochimica Acta, 27, 467–475. DOI: 10.1016/0013-4686(82)85025-1.

    Article  CAS  Google Scholar 

  • Ramji, K., Cairns, D. R., & Rajeswari, S. (2008). Synergistic inhibition effect of 2-mercaptobenzothiazole and Tween-80 on the corrosion of brass in NaCl solution. Applied Surface Science, 254, 4483–4493. DOI:10.1016/j.apsusc.2008.01.031.

    Article  CAS  Google Scholar 

  • Ranjana, Maji, M., & Nandi, M. M. (2009). Corrosion inhibition of brass in presence of sulphonamidoimidazoline and hydropyrimidine in chloride solution. Indian Journal of Chemical Technology, 16, 221–227.

    CAS  Google Scholar 

  • Ravichandran, R., & Rajendran, N. (2005a). Influence of benzotriazole derivatives on the dezincification of 65-35 brass in sodium chloride. Applied Surface Science, 239, 182–192. DOI:10.1016/j.apsusc.2004.05.145.

    Article  CAS  Google Scholar 

  • Ravichandran, R., & Rajendran, N. (2005b). Electrochemical behaviour of brass in artificial seawater: effect of organic inhibitors. Applied Surface Science, 241, 449–458. DOI:10.1016/j.apsusc.2004.07.046.

    Article  CAS  Google Scholar 

  • Robinson, F. P. A., & Shalit, M. (1964). The dezincification of brass. Anti-Corrosion Methods and Materials, 11(4), 11–14. DOI:10.1108/eb020168.

    Article  CAS  Google Scholar 

  • Solmaz, R., Karda, G., Çulha, M., Yazıcı, B., & Erbil, M. (2008a). Investigation of adsorption and inhibitive effect of 2-mercaptothiazoline on corrosion of mild steel in hydrochloric acid media. Electrochimica Acta, 53, 5941–5952. DOI:10.1016/j.electacta.2008.03.055.

    Article  CAS  Google Scholar 

  • Solmaz, R., Karda, G., Yazıcı, B., & Erbil, M. (2008b). Adsorption and corrosion inhibitive properties of 2-amino-5-mercapto-1,3,4-thiadiazole on mild steel in hydrochloric acid media. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 312, 7–17. DOI:10.1016/j.colsurfa.2007.06.035.

    Article  CAS  Google Scholar 

  • Solmaz, R., Altunbaş, E., & Kardaş, G. (2011). Adsorption and corrosion inhibition effect of 2-((5-mercapto-1,3,4-thiadiazol-2-ylimino)methyl)phenol Schiff base on mild steel. Materials Chemistry and Physics, 125, 796–801 DOI:10.1016/j.matchemphys.2010.09.056.

    Article  CAS  Google Scholar 

  • Sugawara, H., & Ebiko, H. (1967). Dezincification of brass. Corrosion Science, 7, 513–523. DOI: 10.1016/s0010-938x(67)80090-8.

    Article  CAS  Google Scholar 

  • Sürme, Y., Gürten, A. A., & Bayol, E. (2011). Corrosion behaviour of mild steel in presence of scale inhibitor in sulfuric acid solution. Protection of Metals and Physical Chemistry of Surfaces, 47, 117–120. DOI:10.1134/s2070205110051053.

    Article  Google Scholar 

  • Uhlig, H. H. (1963). Corrosion and corrosion control: An introductionzto corrosion science and engineering (pp. 290). New York, NY, USA: Wiley.

    Google Scholar 

  • Wang, X. M., Yang, H. Y., & Wang, F. H. (2010). A cationic gemini-surfactant as effective inhibitor for mild steel in HCl solutions. Corrosion Science, 52, 1268–1276. DOI:10.1016/j.corsci.2009.12.018.

    Article  CAS  Google Scholar 

  • Young, D. C. (2001). Computational chemistry: A practical guide for applying techniques to real world problems. New York, NY, USA: Wiley.

    Google Scholar 

  • Zhang, R., & Somasundaran, P. (2006). Advances in adsorption of surfactants and their mixtures at solid/solution interfaces. Advances in Colloid and Interface Science, 123–126, 213–229. DOI:10.1016/j.cis.2006.07.004.

    Article  Google Scholar 

  • Zhang, Q., Gao, Z. N., Xu, F., & Zou, X. (2011). Adsorption and corrosion inhibitive properties of gemini surfactants in the series of hexanediyl-1,6-bis-(diethyl alkyl ammonium bromide) on aluminium in hydrochloric acid solution. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 380, 191–200. DOI:10.1016/j.colsurfa.2011.02.035.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Demet Özkır.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Özkır, D., Bayol, E., Gürten, A.A. et al. Effect of hyamine on electrochemical behaviour of brass alloy in HNO3 solution. Chem. Pap. 67, 202–212 (2013). https://doi.org/10.2478/s11696-012-0255-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11696-012-0255-y

Keywords

Navigation