Skip to main content
Log in

Methyltrioxorhenium-catalysed oxidation of secondary amines to nitrones in ionic liquids

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

Nitrones serve as starting materials for the synthesis of many heterocycles. Oxidation of secondary amines using hydrogen peroxide and the catalytic amount of methyltrioxorhenium in ionic liquids is a useful method for the preparation of nitrones. Ultrasonic irradiation and ionic liquids have a positive influence on the reaction. The nitrones required were isolated in good yields. Corresponding hydroxylamines, which can be easily oxidised to nitrones, often accompanied the main products. Methyltrioxorhenium in ionic liquids was re-used in several reaction cycles without any deteriorating effect on the course of the reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Andrade, M. M., Barros, M. T., & Pinto, R. C. (2008). Exploiting microwave-assisted neat procedures: synthesis of N-aryl and N-alkylnitrones and their cycloaddition en route for isoxazolidines. Tetrahedron, 64, 10521–10530. DOI: 10.1016/j.tet.2008.08.101.

    Article  CAS  Google Scholar 

  • Armarego, W. L. F., & Chai, C. L. L. (2003). Purification of laboratory chemicals (5th ed.). Burlington, MA, USA: Elsevier.

    Google Scholar 

  • Ballini, R., Marcantoni, E., & Petrini, M. (1992). A nitronebased approach to the enantioselective total synthesis of (−)-anisomycin. Journal of Organic Chemistry, 57, 1316–1318. DOI: 10.1021/jo00030a051.

    Article  CAS  Google Scholar 

  • Bernini, R., Coratti, A., Fabrizi, G., & Goggiamani, A. (2003). CH3ReO3/H2O2 in room temperature ionic liquids: an homogeneous recyclable catalytic system for the Baeyer-Villiger reaction. Tetrahedron Letters, 44, 8991–8994. DOI: 10.1016/j.tetlet.2003.10.002.

    Article  CAS  Google Scholar 

  • Bernini, R., Coratti, A., Provenzano, G., Fabrizi, G., & Tofani, D. (2005). Oxidation of aromatic aldehydes and ketones by H2O2/CH3ReO3 in ionic liquids: a catalytic efficient reaction to achieve dihydric phenols. Tetrahedron, 61, 1821–1825. DOI: 10.1016/j.tet.2004.12.025.

    Article  CAS  Google Scholar 

  • Buonomenna, M. G., Drioli, E., Bertoncello, R., Milanese, L., Prins, L. J., Scrimin, P., & Licini, G. (2006). Ti(IV)/trialkanolamine catalytic polymeric membranes: Preparation, characterization, and use in oxygen transfer reactions. Journal of Catalysis, 238, 221–231. DOI: 10.1016/j.jcat.2005.11.044.

    Article  CAS  Google Scholar 

  • Cicchi, S., Ponzuoli, P., Goti, A., & Brandi, A. (2000). Synthesis of enantiopure protected 3-hydroxy-4-amino pyrroline N-oxides. Tetrahedron Letters, 41, 1583–1587. DOI: 10.1016/s0040-4039(99)02335-7.

    Article  CAS  Google Scholar 

  • Colacino, E., Nun, P., Colacino, F. M., Martinez, J., & Lamaty, F. (2008). Solvent-free synthesis of nitrones in a ball-mill. Tetrahedron, 64, 5569–5576. DOI: 10.1016/j.tet.2008.03.091.

    Article  CAS  Google Scholar 

  • Colladon, M., Scarso, A., & Strukul, G. (2008). Mild catalytic oxidation of secondary and tertiary amines to nitrones and Noxides with H2O2 mediated by Pt(II) catalysts. Green Chemistry, 10, 793–798. DOI: 10.1039/b805404e.

    Article  CAS  Google Scholar 

  • Colonna, S., Pironti, V., Carrea, G., Pasta, P., & Zambianchi, F. (2004). Oxidation of secondary amines by molecular oxygen and cyclohexanone monooxygenase. Tetrahedron, 60, 569–575. DOI: 10.1016/j.tet.2003.10.100.

    Article  CAS  Google Scholar 

  • Coşkun, N., & Parlar, A. (2005). One-pot synthesis and hydroxylaminolysis of asymmetrical acyclic nitrones. Synthetic Communications, 35, 2445–2451. DOI: 10.1080/00397910500191169.

    Article  Google Scholar 

  • Crucianelli, M., Saladino, R., & DeAngelis, F. (2010). Methyltrioxorhenium catalysis in nonconventional solvents: A great catalyst in a safe reaction medium. ChemSusChem, 3, 524–540. DOI: 10.1002/cssc.201000022.

    Article  CAS  Google Scholar 

  • Dicken, C. M., & DeShong, P. (1982). Reactions at high pressures. [3+2] Dipolar cycloaddition of nitrones with vinyl ethers. The Journal of Organic Chemistry, 47, 2047–2051. DOI: 10.1021/jo00132a014.

    Article  CAS  Google Scholar 

  • Espenson, J. H. (1999). Atom-transfer reactions catalyzed by methyltrioxorhenium(VII) -mechanisms and applications. Chemical Communications, 1999, 479–488. DOI: 10.1039/a809222b.

    Article  Google Scholar 

  • Evans, D. A., Song, H. J., & Fandrick, K. R. (2006). Enantioselective nitrone cycloadditions of α,β-unsaturated 2-acyl imidazoles catalyzed by bis(oxazolinyl)pyridine-cerium(IV) triflate complexes. Organic Letters, 8, 3351–3354. DOI: 10.1021/ol061223i.

    Article  CAS  Google Scholar 

  • Fernandes, L., Fischer, F. L., Ribeiro, C.W., Silveira, G. P., Sá, M. M., Nome, F., & Terenzi, H. (2008). Metal-free artificial nucleases based on simple oxime and hydroxylamine scaffolds. Bioorganic & Medicinal Chemistry Letters, 18, 4499–4502. DOI: 10.1016/j.bmcl.2008.07.052.

    Article  CAS  Google Scholar 

  • Forcato, M., Nugent, W. A., & Licini, G. (2003). A ‘waterproof’ catalyst for the oxidation of secondary amines to nitrones with alkyl hydroperoxides. Tetrahedron Letters, 44, 49–52. DOI: 10.1016/s0040-4039(02)02490-5.

    Article  CAS  Google Scholar 

  • Forcato, M., Mba, M., Nugent, W. A., & Licini, G. (2010). Effective oxidation of secondary amines to nitrones with alkyl hydroperoxides catalysed by (trialkanolaminato)titanium(IV) complexes. European Journal of Organic Chemistry, 2010, 740–748. DOI: 10.1002/ejoc.200900867.

    Article  Google Scholar 

  • Gautheron-Chapoulaud, V., Pandya, S. U., Cividino, P., Masson, G., Py, S., & Vallée, Y. (2001). One-pot synthesis of functionalized nitrones from nitro compounds. Synlett, 2001, 1281–1283. DOI: 10.1055/s-2001-16042.

    Article  Google Scholar 

  • Gella, C., Ferrer, `E., Alibés, R., Busqué, F., de March, P., Figueredo, M., & Font, J. (2009). A metal-free general procedure for oxidation of secondary amines to nitrones. The Journal of Organic Chemistry, 74, 6365–6367. DOI: 10.1021/jo901108u.

    Article  CAS  Google Scholar 

  • Chow, S. S., Nevalainen, M., Evans, C. A., & Johannes, C. W. (2007). A new organocatalyst for 1,3-dipolar cycloadditions of nitrones to α,β-unsaturated aldehydes. Tetrahedron Letters, 48, 277–280. DOI: 10.1016/j.tetlet.2006.11.029.

    Article  CAS  Google Scholar 

  • Gothelf, K. V., & Jørgensen, K. A. (1998). Asymmetric 1,3-dipolar cycloaddition reactions. Chemical Reviews, 98, 863–909. DOI: 10.1021/cr970324e.

    Article  CAS  Google Scholar 

  • Goti, A., De Sarlo, F., & Romani, M. (1994). Highly efficient and mild synthesis of nitrones by catalytic oxidation of hydroxylamines with tetra-n-propylammonium perruthenate. Tetrahedron Letters, 35, 6571–6574. DOI: 10.1016/s0040-4039(00)78275-x.

    Article  CAS  Google Scholar 

  • Goti, A., & Nannelli, L. (1996). Synthesis of nitrones by methyltrioxorhenium catalyzed direct oxidation of secondary amines. Tetrahedron Letters, 37, 6025–6028. DOI: 10.1016/0040-4039(96)01266-x.

    Article  CAS  Google Scholar 

  • Hassan, A., Wazeer, M. I. M., Perzanowski, H. P., & Asrof Ali, S. (1997). Nitrogen inversion and N-O bond rotation in some hydroxylamine and isoxazolidine derivatives. Journal of the Chemical Society, Perkin Transactions 2, 1997, 411–418. DOI: 10.1039/a604719j.

    Google Scholar 

  • Herrmann, W. A., Fischer, R. W., & Marz, D. W. (1991). Methyltrioxorhenium as catalyst for olefin oxidation. Angewandte Chemie International Edition, 30, 1638–1641. DOI: 10.1002/anie.199116381.

    Article  Google Scholar 

  • Jen, W. S., Wiener, J. J. M., & MacMillan, D. W. C. (2000). New strategies for organic catalysis: The first enantioselective organocatalytic 1,3-dipolar cycloaddition. Journal of the American Chemical Society, 122, 9874–9875. DOI: 10.1021/ja005517p.

    Article  CAS  Google Scholar 

  • Kano, T., Hashimoto, T., & Maruoka, K. (2005). Asymmetric 1,3-dipolar cycloaddition reaction of nitrones and acrolein with a bis-titanium catalyst as chiral Lewis acid. Journal of the American Chemical Society, 127, 11926–11927. DOI: 10.1021/ja0523284.

    Article  CAS  Google Scholar 

  • Kluge, R., Schulz, M., & Liebsch, S. (1996). Sulfonic peracids — III. Heteroatom oxidation and chemoselectivity. Tetrahedron, 52, 5773–5782. DOI: 10.1016/0040-4020(96)00202-5.

    Article  CAS  Google Scholar 

  • Marcantoni, E., Petrini, M., & Polimanti, O. (1995). Oxidation of secondary amines to nitrones using urea-hydrogen peroxide complex (UHP) and metal catalysts. Tetrahedron Letters, 36, 3561–3562. DOI: 10.1016/0040-4039(95)00558-t.

    Article  CAS  Google Scholar 

  • Mitsui, H., Zenki, S.-i., Shiota, T., & Murahashi, S. I. (1984). Tungstate catalysed oxidation of secondary amines with hydrogen peroxide. A novel transformation of secondary amines into nitrones. Journal of the Chemical Society, Chemical Communications, 1984, 874–875. DOI: 10.1039/c39840000874.

    Article  Google Scholar 

  • Murahashi, S. I., Naota, T., & Taki, H. (1985). Rutheniumcatalysed oxidation of secondary amines to imines using t-butyl hydroperoxide. Journal of the Chemical Society, Chemical Communications, 1985, 613–614. DOI: 10.1039/c39850000613.

    Article  Google Scholar 

  • Murahashi, S., Mitsui, H., Shiota, T., Tsuda, T., & Watanabe, S. (1990). Tungstate-catalyzed oxidation of secondary amines to nitrones. α-Substitution of secondary amines via nitrones. The Journal of Organic Chemistry, 55, 1736–1744. DOI: 10.1021/jo00293a013.

    Article  CAS  Google Scholar 

  • Murray, R.W., & Singh, M. (1990). Chemistry of dioxiranes. 16. A facile one step synthesis of C-aryl nitrones using dimethyldioxirane. The Journal of Organic Chemistry, 55, 2954–2957. DOI: 10.1021/jo00296a073.

    Article  CAS  Google Scholar 

  • Murray, R. W., Singh, M., & Jeyaraman, R. (1992). Dioxiranes. 20. Preparation and properties of some new dioxiranes. Journal of the American Chemical Society, 114, 1346–1351. DOI: 10.1021/ja00030a032.

    Article  CAS  Google Scholar 

  • Murray, R. W., Iyanar, K., Chen, J., & Wearing, J. T. (1996). Synthesis of nitrones using the methyltrioxorhenium/hydrogen peroxide system. The Journal of Organic Chemistry, 61, 8099–8102. DOI: 10.1021/jo961252e.

    Article  CAS  Google Scholar 

  • Nguyen, T. B., Martel, A., Dhal, R., & Dujardin, G. (2009). A large-scale low-cost preparation of N-benzylhydroxylamine hydrochloride. Synthesis, 2009, 3174–3176. DOI: 10.1055/s-0029-1216932.

    Article  Google Scholar 

  • Owens, G. S., Arias, J., & Abu-Omar, M. M. (2000). Rhenium oxo complexes in catalytic oxidations. Catalysis Today, 55, 317–363. DOI: 10.1016/s0920-5861(99)00251-5.

    Article  CAS  Google Scholar 

  • Puglisi, A., Benaglia, M., Cinquini, M., Cozzi, F., & Celentano, G. (2004). Enantioselective 1,3-dipolar cycloadditions of unsaturated aldehydes promoted by a poly(ethylene glycol)-supported organic catalyst. European Journal of Organic Chemistry, 2004, 567–573. DOI: 10.1002/ejoc.200300571.

    Article  Google Scholar 

  • Radivoy, G., Alonso, F., & Yus, M. (2001). Two new methodologies for the deoxygenation and reduction of nitrones based on the use of lithium and DTBB (cat.). Synthesis, 2001, 427–430. DOI: 10.1055/s-2001-11446.

    Article  Google Scholar 

  • Robl, J. A., & Hwu, J. R. (1985). An efficient method for the generation of N-methyl nitrones. The Journal of Organic Chemistry, 50, 5913–5916. DOI: 10.1021/jo00350a110.

    Article  CAS  Google Scholar 

  • Saladino, R., Crestini, C., Crucianelli, M., Soldaini, G., Cardona, F., & Goti, A. (2008). Ionic liquids in methyltrioxorhenium catalyzed epoxidation-methanolysis of glycals under homogeneous and heterogeneous conditions. Journal of Molecular Catalysis A: Chemical, 284, 108–115. DOI: 10.1016/j.molcata.2008.01.012.

    Article  CAS  Google Scholar 

  • Sharma, V. B., Jain, S. L., & Sain, B. (2003). Methyltrioxorhenium catalyzed aerobic oxidation of organonitrogen compounds. Tetrahedron Letters, 44, 3235–3237. DOI: 10.1016/s0040-4039(03)00639-7.

    Article  CAS  Google Scholar 

  • Singh, B., Jain, S. L., Rana, B. S., Khatri, P. K., Sinha, A. K., & Sain, B. (2010). Silica-immobilized highly dispersed oxo-rhenium and its catalytic activity for the direct synthesis of nitrones. ChemCatChem, 2, 1260–1264. DOI: 10.1002/cctc.201000121.

    Article  CAS  Google Scholar 

  • Weseliński, Ł., Stępniak, P., & Jurczak, J. (2009). HHybrid diamines derived from 1,1′-binaphthyl-2,2′-diamine and α-amino acids as organocatalysts for 1,3-dipolar cycloaddition of aromatic nitrones to (E)-crotonaldehyde. Synlett, 2009, 2261–2264. DOI: 10.1055/s-0029-1217808.

  • Yamada, Y. M. A., Tabata, H., Takahashi, H., & Ikegami, S. (2002). Oxidation of amines and sulfides catalyzed by an assembled complex of phosphotungstate and non-crosslinked amphiphilic polymer. Synlett, 2002, 2031–2034. DOI: 10.1055/s-2002-35596.

    Article  Google Scholar 

  • Yamazaki, S. (1997). Methyltrioxorhenium-catalyzed oxidation of secondary and primary amines with hydrogen peroxide. Bulletin of the Chemical Society of Japan, 70, 877–883. DOI: 10.1246/bcsj.70.877.

    Article  CAS  Google Scholar 

  • Zauche, T. H., & Espenson, J. H. (1997). Kinetics and mechanism of the oxidation of secondary hydroxylamines to nitrones with hydrogen peroxide, catalyzed by methylrhenium trioxide. Inorganic Chemistry, 36, 5257–5261. DOI: 10.1021/ic970649d.

    Article  CAS  Google Scholar 

  • Zonta, C., Cazzola, E., Mba, M., & Licini, G. (2008). C3-Symmetric titanium(IV) triphenolate amino complexes for a fast and effective oxidation of secondary amines to nitrones with hydrogen peroxide. Advanced Synthesis & Catalysis, 350, 2503–2506. DOI: 10.1002/adsc.200800494.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Radovan Šebesta.

Additional information

Dedicated to Professor Štefan Toma on the occasion of his 75th birthday

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mečiarová, M., Mojzesová, M. & Šebesta, R. Methyltrioxorhenium-catalysed oxidation of secondary amines to nitrones in ionic liquids. Chem. Pap. 67, 51–58 (2013). https://doi.org/10.2478/s11696-012-0208-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11696-012-0208-5

Keywords

Navigation