Skip to main content
Log in

A three-scale cracking criterion for drying soils

  • Published:
Acta Geophysica Aims and scope Submit manuscript

Abstract

Cracking is a most unwanted development in soil structures undergoing periodic drying and wetting. Desiccation cracks arise in an apparent absence of external forces. Hence, either an internal, self-equilibrated stress pattern resulting from kinematic incompatibilities, or a stress resulting from reaction forces at the constraints appear as a cracking cause, when reaching tensile strength. At a meso-scale, tubular drying pores are considered in the vicinity of a random imperfection, inducing a stress concentration in the presence of significant pore suction. This approach allows one to use the effective stress analysis, which otherwise, away from the stress concentration, usually yields compressive effective stress and hence a physically incompatible criterion for a tensile crack. Recent experiments on idealized configurations of clusters of grains provide geometrical data suggesting that an imperfection as a result of air entry deep into the granular medium penetrates over 4 to 8 internal radii of a typical pore could yield a tensile effective stress sufficient for crack propagation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Brinker, C.J., and G.W. Scherer (1990), Sol-Gel Science. The Physics and Chemistry of Sol-Gel Processing, Academic Press, San Diego.

    Google Scholar 

  • Chertkov, V.Y. (1995), Evaluation for soil of crack net connectedness and critical stress-intensity factor, Int. Agrophys. 9, 189–195.

    Google Scholar 

  • Childs, E.C. (1969), An Introduction to the Physical Basis of Soil Water Phenomena, John Wiley-Interscience, London, 493 pp.

    Google Scholar 

  • Corte, A., and A. Higashi (1964), Experimental research on desiccation cracks in soil, Final Rep. CRREL-RR-66, National Technical Information Service, Alexandria, USA.

    Google Scholar 

  • Fredlund, D.G., and H. Rahardjo (1993), Soil Mechanics for Unsaturated Soils, John Wiley & Sons, New York.

    Book  Google Scholar 

  • Fung, Y.C. (1984), Biodynamics: Circulation, Springer, New York.

    Google Scholar 

  • Hu, L.B., H. Péron, T. Hueckel, and L. Laloui (2013a), Desiccation shrinkage of non-clayey soils: multiphysics mechanisms and a microstructural model, Int. J. Numer. Anal. Meth. Geomech. 37,12, 1761–1781, DOI: 10.1002/nag.2108.

    Article  Google Scholar 

  • Hu, L.B., H. Péron, T. Hueckel, and L. Laloui (2013b), Desiccation shrinkage of non-clayey soils: a numerical study, Int. J. Numer. Anal. Meth. Geomech. 37,12, 1782–1800, DOI: 10.1002/nag.2107.

    Article  Google Scholar 

  • Hu, L.B., H. Péron, T. Hueckel, and L. Laloui (2013c), Mechanisms and critical properties in drying shrinkage of soils: experimental and numerical parametric studies, Can. Geoech. J. 50,5, 536–549, DOI 10.1139/cgj-2012-0065.

    Article  Google Scholar 

  • Hu, L.B., M. Monfared, B. Mielniczuk, L. Laloui, T. Hueckel, and M.S. El Youssoufi (2013d), Multi-scale approach to cracking criteria for drying silty soils. In: GeoCongress 2013, 4–7 March 2013, San Diego, USA, 838–845.

    Google Scholar 

  • Kodikara, J., S.L. Barbour, and D.G. Fredlund (2002), Structure development in surficial heavy clay soils: A synthesis of mechanisms, Aust. Geomech. 37,3, 25–40.

    Google Scholar 

  • Lu, N., and W.J. Likos (2004), Unsaturated Soil Mechanics, John Wiley, New York.

    Google Scholar 

  • Maeda, N., J.N. Israelachvili, and M.M. Kohonen (2003), Evaporation and instabilities of microscopic capillary bridges, Proc. Natl. Acad. Sci. USA 100,3, 803–808, DOI: 10.1073/pnas.0234283100.

    Article  Google Scholar 

  • Mielniczuk, B., T. Hueckel, and M.S. El Youssoufi (2013), Micro-scale study of rupture in desiccating granular media. In: GeoCongress 2013, 4–7 March 2013, San Diego, USA.

    Google Scholar 

  • Mielniczuk, B., M.S. El Youssoufi, L. Sabatier, and T. Hueckel (2014), Rupture of an evaporating liquid bridge between two grains, Acta Geophys. 62,5, 1087–1108, DOI: 10.2478/s11600-014-0225-6 (this issue).

    Article  Google Scholar 

  • Pellenq, R.J.M., B. Coasne, R.O. Denoyel, and O. Coussy (2009), Simple phenomenological model for phase transitions in confined geometry. 2. Capillary condensation/evaporation in cylindrical mesopores, Langmuir 25,3, 1393–1402, DOI 10.1021/la8020244.

    Article  Google Scholar 

  • Péron, H. (2008), Desiccation cracking of soils, Ph.D. Thesis, EPFL, Lausanne.

    Google Scholar 

  • Péron, H., T. Hueckel, L. Laloui, and L.B. Hu (2009), Fundamentals of desiccation cracking of fine-grained soils: experimental characterisation and mechanisms identification, Can. Geotech. J. 46,10, 1177–1201, DOI: 10.1139/T09-054.

    Article  Google Scholar 

  • Péron, H., L. Laloui, L.B. Hu, and T. Hueckel (2010), Desiccation cracking of soils. In: L. Laloui (ed.), Mechanics of Unsaturated Geomaterials, John Wiley, Hoboken, 55–86.

    Google Scholar 

  • Péron, H., L. Laloui, L.B. Hu, and T. Hueckel (2013), Formation of drying crack patterns in soils: a deterministic approach, Acta Geotech. 8,2, 215–221, DOI: 10.1007/s11440-012-0184-5.

    Article  Google Scholar 

  • Scherer, G.W. (1992), Crack-tip stress in gels, J. Non-Cryst. Solids 144, 210–216, DOI: 10.1016/S0022-3093(05)80402-8.

    Article  Google Scholar 

  • Taylor, G. (1959), The dynamics of thin sheets of fluid. III. Disintegration of fluid sheets, Proc. Roy. Soc. London A 253,1274, 313–321, DOI 10.1098/rspa.1959.0196.

    Article  Google Scholar 

  • Terzaghi, K. (1927), Concrete roads: A problem in foundation engineering, J. Boston Soc. Civil Eng. 14, 265–282.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomasz Hueckel.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hueckel, T., Mielniczuk, B., El Youssoufi, M.S. et al. A three-scale cracking criterion for drying soils. Acta Geophys. 62, 1049–1059 (2014). https://doi.org/10.2478/s11600-014-0214-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11600-014-0214-9

Key words

Navigation