Skip to main content
Log in

microRNA in the control of stem-like phenotype of cancer cells

  • Mini-Review
  • Published:
Central European Journal of Biology

Abstract

Current therapies against metastatic tumors are still ineffective. Cancer stem cells — a small subset of cells inside the tumor that possesses a self-renewal capacity — might be responsible for the recurrence of the tumor after anti-cancer therapies. Their immortality and unique drug resistance impede their eradication during therapy. The ‘stemness’ of these cells is controlled by microRNAs. These molecules possess the ability to downregulate gene expression by binding to the target mRNA. It turns out that microRNAs control the expression of approximately 60% of the genes in human cells. MicroRNA aberrant expression can lead to cancer development and progression. Therefore, recent research has focused on unraveling the role of microRNA in maintaining a stem-like phenotype in malignant tumors and cancer stem cells. This review summarizes our current knowledge about microRNAs that control the self-renewal capacity of cancer stem cells and indicates the importance of profound research aimed at developing efficient miRNA-targeted therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Lee Y., Kim M., Han J., Yeom K.H., Lee S., Baek S.H., et al., MicroRNA genes are transcribed by RNA polymerase II, EMBO J., 2004, 23, 4051–4060

    Article  PubMed  CAS  Google Scholar 

  2. Cai X., Hagedorn C.H., Cullen B.R., Human microRNAs are processed from capped, polyadenylated transcripts that can also function as mRNAs, RNA, 2004, 10, 1957–1966

    Article  PubMed  CAS  Google Scholar 

  3. Borchert G.M., Lanier W., Davidson B.L., RNA polymerase III transcribes human microRNAs, Nat. Struct. Mol. Biol., 2006, 13, 1097–10101

    Article  PubMed  CAS  Google Scholar 

  4. Gregory R.I., Yan K.P., Amuthan G., Chendrimada T., Doratotaj B., Cooch N., et al., The Microprocessor complex mediates the genesis of microRNAs, Nature, 2004, 432, 235–240

    Article  PubMed  CAS  Google Scholar 

  5. Yi R., Qin Y., Macara I.G., Cullen B.R., Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs, Genes Dev., 2003, 17, 3011–3016

    Article  PubMed  CAS  Google Scholar 

  6. Denli A.M., Tops B.B., Plasterk R.H., Ketting R.F., Hannon G.J., Processing of primary microRNAs by the Microprocessor complex, Nature, 2004, 432, 231–235

    Article  PubMed  CAS  Google Scholar 

  7. Jagadeeswaran G., Zheng Y., Sumathipala N., Jiang H., Arrese E.L., Soulages J.L., et al., Deep sequencing of small RNA libraries reveals dynamic regulation of conserved and novel microRNAs and microRNA-stars during silkworm development, BMC Genomics, 2010, 11, 52

    Article  PubMed  CAS  Google Scholar 

  8. Zhang L., Ding L., Cheung T.H., Dong M.Q., Chen J., Sewell A.K., et al., Systematic identification of C. elegans miRISC proteins, miRNAs, and mRNA targets by their interactions with GW182 proteins AIN-1 and AIN-2, Mol. Cell, 2007, 28, 598–613

    Article  PubMed  CAS  Google Scholar 

  9. Babiarz J.E., Ruby J.G., Wang Y., Bartel D.P., Blelloch R., Mouse ES cells express endogenous shRNAs, siRNAs, and other Microprocessor-independent, Dicer-dependent small RNAs, Genes Dev., 2008, 22, 2773–2785

    Article  PubMed  CAS  Google Scholar 

  10. Berezikov E., Liu N., Flynt A.S., Hodges E., Rooks M., Hannon G.J., et al., Evolutionary flux of canonical microRNAs and mirtrons in Drosophila, Nat. Genet., 2010, 42, 6–9

    Article  PubMed  CAS  Google Scholar 

  11. Rodriguez A., Griffiths-Jones S., Ashurst J.L., Bradley A., Identification of mammalian microRNA host genes and transcription units, Genome Res., 2004, 14, 1902–1910

    Article  PubMed  CAS  Google Scholar 

  12. Behm-Ansmant I., Rehwinkel J., Doerks T., Stark A., Bork P., Izaurralde E., mRNA degradation by miRNAs and GW182 requires both CCR4:NOT deadenylase and DCP1:DCP2 decapping complexes, Genes Dev., 2006, 20, 1885–1898

    Article  PubMed  CAS  Google Scholar 

  13. Bartel D.P., MicroRNAs: target recognition and regulatory functions, Cell, 2009, 136, 215–233

    Article  PubMed  CAS  Google Scholar 

  14. Eulalio A., Huntzinger E., Izaurralde E., Getting to the root of miRNA-mediated gene silencing, Cell, 2008, 132, 9–14

    Article  PubMed  CAS  Google Scholar 

  15. Chekulaeva M., Filipowicz W., Mechanisms of miRNA-mediated post-transcriptional regulation in animal cells, Curr. Opin. Cell Biol., 2009, 21, 452–460

    Article  PubMed  CAS  Google Scholar 

  16. Ørom U.A., Nielsen F.C., Lund A.H., MicroRNA-10a binds the 5’UTR of ribosomal protein mRNAs and enhances their translation, Mol. Cell, 2008, 30, 460–471

    Article  PubMed  CAS  Google Scholar 

  17. Henke J.I., Goergen D., Zheng J., Song Y., Schüttler C.G., Fehr C., et al., microRNA-122 stimulates translation of hepatitis C virus RNA, EMBO J., 2008, 27, 3300–3310

    Article  PubMed  CAS  Google Scholar 

  18. Reya T., Morrison S.J., Clarke M.F., Weissman I.L., Stem cells, cancer, and cancer stem cells, Nature, 2001, 414, 105–111

    Article  PubMed  CAS  Google Scholar 

  19. Clarke M.F., Dick J.E., Dirks P.B., Eaves C.J., Jamieson C.H., Jones D.L., et al., Cancer stem cells—perspectives on current status and future directions: AACR Workshop on cancer stem cells, Cancer Res., 2006, 66, 9339–9344

    Article  PubMed  CAS  Google Scholar 

  20. Gupta P.B., Chaffer C.L., Weinberg R.A., Cancer stem cells: mirage or reality? Nat. Med., 2009, 15, 1010–1012

    Article  PubMed  CAS  Google Scholar 

  21. Welte Y., Adjaye J., Lehrach H.R., Regenbrecht C.R., Cancer stem cells in solid tumors: elusive or illusive? Cell Commun. Signal., 2010, 8, 6

    Article  PubMed  CAS  Google Scholar 

  22. Liu S., Dontu G., Wicha M.S., Mammary stem cells, self-renewal pathways, and carcinogenesis, Breast Cancer Res., 2005, 7, 86–95

    Article  PubMed  CAS  Google Scholar 

  23. Dontu G., Jackson K.W., McNicholas E., Kawamura M.J., Abdallah W.M, Wicha M.S., Role of Notch signaling in cell-fate determination of human mammary stem/progenitor cells, Breast Cancer Res, 2004, 6, R605–R615

    Article  PubMed  CAS  Google Scholar 

  24. Karhadkar S.S., Bova G.S., Abdallah N., Dhara S., Gardner D., Maitra A., et al., Hedgehog signalling in prostate regeneration, neoplasia and metastasis, Nature, 2004, 431, 707–712

    Article  PubMed  CAS  Google Scholar 

  25. Olsen C.L., Hsu P.P., Glienke J., Rubanyi G.M., Brooks A.R., Hedgehog-interacting protein is highly expressed in endothelial cells but down-regulated during angiogenesis and in several human tumors, BMC Cancer, 2004, 4, 43

    Article  PubMed  CAS  Google Scholar 

  26. Nam Y., Aster J.C., Blacklow S.C., Notch signaling as a therapeutic target, Curr. Opin. Chem. Biol., 2002, 6, 501–509

    Article  PubMed  CAS  Google Scholar 

  27. Nickoloff B.J., Osborne B.A., Miele L., Notch signaling as a therapeutic target in cancer: a new approach to the development of cell fate modifying agents, Oncogene, 2003, 22, 6598–6608

    Article  PubMed  CAS  Google Scholar 

  28. Bjerkvig R., Tysnes B.B., Aboody K.S., Najbauer J., Terzis A.J., Opinion: the origin of the cancer stem cell: current controversies and new insights, Nat. Rev. Cancer, 2005, 5, 899–904

    Article  PubMed  CAS  Google Scholar 

  29. Nowell P.C., The clonal evolution of tumor cell populations, Science, 1976, 194, 23–28

    Article  PubMed  CAS  Google Scholar 

  30. Ailles L.E., Weissman I.L., Cancer stem cells in solid tumors, Curr. Opin. Biotechnol., 2007, 18, 460–466

    Article  PubMed  CAS  Google Scholar 

  31. Bonnet D., Dick J.E., Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell, Nat. Med., 1997, 3, 730–737

    Article  PubMed  CAS  Google Scholar 

  32. Lapidot T., Sirard C., Vormoor J., Murdoch B., Hoang T., Caceres-Cortes J., et al., A cell initiating human acute myeloid leukaemia after transplantation into SCID mice, Nature, 1994, 367, 645–648

    Article  PubMed  CAS  Google Scholar 

  33. Al-Hajj M., Wicha M.S., Benito-Hernandez A., Morrison S.J., Clarke M.F., Prospective identification of tumorigenic breast cancer cells, Proc. Natl. Acad. Sci. U.S.A., 2003, 100, 3983–3988

    Article  PubMed  CAS  Google Scholar 

  34. Ponti D., Costa A., Zaffaroni N., Pratesi G., Petrangolini G., Coradini D., et al., Isolation and in vitro propagation of tumorigenic breast cancer cells with stem/progenitor cell properties, Cancer Res., 2005, 65, 5506–5511

    Article  PubMed  CAS  Google Scholar 

  35. Dontu G., Abdallah W.M., Foley J.M., Jackson K.W., Clarke M.F., Kawamura M.J., et al., In vitro propagation and transcriptional profiling of human mammary stem/progenitor cells, Genes Dev., 2003, 17, 1253–1270

    Article  PubMed  CAS  Google Scholar 

  36. O’Brien C.A., Pollett A., Gallinger S., Dick J.E., A human colon cancer cell capable of initiating tumour growth in immunodeficient mice, Nature, 2007, 445, 106–110

    Article  PubMed  CAS  Google Scholar 

  37. Singh S.K., Hawkins C., Clarke I.D., Squire J.A., Bayani J., Hide T., et al., Identification of human brain tumour initiating cells, Nature, 2004, 432, 396–401

    Article  PubMed  CAS  Google Scholar 

  38. Suetsugu A., Nagaki M., Aoki H., Motohashi T., Kunisada T., Moriwaki H., Characterization of CD133+ hepatocellular carcinoma cells as cancer stem/progenitor cells, Biochem. Biophys. Res. Commun., 2006, 351, 820–824

    Article  PubMed  CAS  Google Scholar 

  39. Fang D., Nguyen T.K., Leishear K., Finko R., Kulp A.N., Hotz S., et al., A tumorigenic subpopulation with stem cell properties in melanomas, Cancer Res., 2005, 65, 9328–9337

    Article  PubMed  CAS  Google Scholar 

  40. Richardson G.D., Robson C.N., Lang S.H., Neal D.E., Maitland N.J., Collins A.T., CD133, a novel marker for human prostatic epithelial stem cells, J. Cell Sci., 2004, 117, 3539–3545

    Article  PubMed  CAS  Google Scholar 

  41. Maeda S., Shinchi H., Kurahara H., Mataki Y., Maemura K., Sato M., et al., CD133 expression is correlated with lymph node metastasis and vascular endothelial growth factor-C expression in pancreatic cancer, Br. J. Cancer, 2008, 98, 1389–1397

    Article  PubMed  CAS  Google Scholar 

  42. Monzani E., Facchetti F., Galmozzi E., Corsini E., Benetti A., Cavazzin C., et al., Melanoma contains CD133 and ABCG2 positive cells with enhanced tumourigenic potential, Eur. J. Cancer, 2007, 43, 935–946

    Article  PubMed  CAS  Google Scholar 

  43. Jin L., Hope K.J., Zhai Q., Smadja-Joffe F., Dick J.E., Targeting of CD44 eradicates human acute myeloid leukemic stem cells, Nat. Med., 2006, 12, 1167–1174

    Article  PubMed  CAS  Google Scholar 

  44. Collins A.T., Berry P.A., Hyde C., Stower M.J., Maitland N.J., Prospective identification of tumorigenic prostate cancer stem cells, Cancer Res., 2005, 65, 10946–10951

    Article  PubMed  CAS  Google Scholar 

  45. Li C., Heidt D.G., Dalerba P., Burant C.F., Zhang L., Adsay V., et al., Identification of pancreatic cancer stem cells, Cancer Res., 2007, 67, 1030–1037

    Article  PubMed  CAS  Google Scholar 

  46. Quintana E., Shackleton M., Foster H.R., Fullen D.R., Sabel M.S., Johnson T.M., et al., Phenotypic heterogeneity among tumorigenic melanoma cells from patients that is reversible and not hierarchically organized, Cancer Cell., 2010, 18, 510–523

    Article  PubMed  CAS  Google Scholar 

  47. Sztiller-Sikorska M., Koprowska K., Jakubowska J., Zalesna I., Stasiak M., Duechler M., et al., 2012. Sphere formation and self-renewal capacity of melanoma cells is affected by the microenvironment, Melanoma Res., 2010, 22, 215–224

    Article  PubMed  Google Scholar 

  48. Pinner S., Jordan P., Sharrock K., Bazley L., Collinson L., Marais R., et al., Intravital imaging reveals transient changes in pigment production and Brn2 expression during metastatic melanoma dissemination, Cancer Res., 2009, 69, 7969–7977

    Article  PubMed  CAS  Google Scholar 

  49. Cheli Y., Giuliano S., Botton T., Rocchi S, Hofman V., Hofman P., et al., Mitf is the key molecular switch between mouse or human melanoma initiating cells and their differentiated progeny, Oncogene, 2011, 30, 2307–2318

    Article  PubMed  CAS  Google Scholar 

  50. Du J., Widlund H.R., Horstmann M.A., Ramaswamy S., Ross K., Huber W.E., et al., Critical role of CDK2 for melanoma growth linked to its melanocytespecific transcriptional regulation by MITF, Cancer Cell, 2004, 6, 565–576

    Article  PubMed  CAS  Google Scholar 

  51. Carreira S., Goodall J., Denat L., Rodriguez M., Nuciforo P., Hoek K.S., et al., Mitf regulation of Dia1 controls melanoma proliferation and invasiveness, Genes Dev., 2006, 20, 3426–3439

    Article  PubMed  CAS  Google Scholar 

  52. Park I.K., Qian D., Kiel M., Becker M.W., Pihalja M., Weissman I.L., et al., Bmi-1 is required for maintenance of adult self-renewing haematopoietic stem cells, Nature, 2003, 423, 302–305

    Article  PubMed  CAS  Google Scholar 

  53. Molofsky A.V., He S., Bydon M., Morrison S.J., Pardal R., Bmi-1 promotes neural stem cell self-renewal and neural development but not mouse growth and survival by repressing the p16Ink4a and p19Arf senescence pathways, Genes Dev., 2005, 19, 1432–1437

    Article  PubMed  CAS  Google Scholar 

  54. Pietersen A.M., Evers B., Prasad A.A., Tanger E., Cornelissen-Steijger P., Jonkers J., et al., Bmi1 regulates stem cells and proliferation and differentiation of committed cells in mammary epithelium, Curr. Biol., 2008, 18, 1094–1099

    Article  PubMed  CAS  Google Scholar 

  55. Christoffersen N.R., Silahtaroglu A., Orom U.A., Kauppinen S., Lund A.H., miR-200b mediates post-transcriptional repression of ZFHX1B, RNA, 2007, 13, 1172–1178

    Article  PubMed  CAS  Google Scholar 

  56. Gregory P.A., Bert A.G., Paterson E.L., Barry S.C., Tsykin A., Farshid G., et al., The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1, Nat. Cell Biol., 2008, 10, 593–601

    Article  PubMed  CAS  Google Scholar 

  57. Park I.H., Zhao R., West J.A., Yabuuchi A., Huo H., Ince T.A., et al., Reprogramming of human somatic cells to pluripotency with defined factors, Nature, 2008, 451, 141–146

    Article  PubMed  CAS  Google Scholar 

  58. Simon J.A, Kingston R.E., Mechanisms of polycomb gene silencing: knowns and unknowns, Nat. Rev. Mol. Cell Biol., 2009, 10, 697–708

    PubMed  CAS  Google Scholar 

  59. Boyer L.A., Plath K., Zeitlinger J., Brambrink T., Medeiros L.A., Lee T.I., et al., Polycomb complexes repress developmental regulators in murine embryonic stem cells, Nature, 2006, 441, 349–353

    Article  PubMed  CAS  Google Scholar 

  60. Herranz N., Pasini D., Díaz V.M., Francí C., Gutierrez A., Dave N., et al., Polycomb complex 2 is required for E-cadherin repression by the Snail1 transcription factor, Mol. Cell Biol., 2008, 28, 4772–4781

    Article  PubMed  CAS  Google Scholar 

  61. Hussain M., Rao M., Humphries A.E., Hong J.A., Liu F., Yang M., et al., Tobacco smoke induces polycomb-mediated repression of Dickkopf-1 in lung cancer cells, Cancer Res., 2009, 69, 3570–3578

    Article  PubMed  CAS  Google Scholar 

  62. Glinsky G.V., Berezovska O., Glinskii A.B., Microarray analysis identifies a death-from-cancer signature predicting therapy failure in patients with multiple types of cancer, J. Clin. Invest., 2005, 115, 1503–1521

    Article  PubMed  CAS  Google Scholar 

  63. Iliopoulos D., Lindahl-Allen M., Polytarchou C., Hirsch H.A., Tsichlis P.N., Struhl K., Loss of miR-200 inhibition of Suz12 leads to polycombmediated repression required for the formation and maintenance of cancer stem cells, Mol. Cell, 2010, 39, 761–772

    Article  PubMed  CAS  Google Scholar 

  64. Biddle A., Liang X., Gammon L., Fazil B., Harper L.J., Emich H., et al., Cancer stem cells in squamous cell carcinoma switch between two distinct phenotypes that are preferentially migratoryor proliferative, Cancer Res., 2011 71, 5317–5326

    Article  PubMed  CAS  Google Scholar 

  65. Brabletz T., Jung A., Spaderna S., Hlubek F., Kirchner T., Opinion: migrating cancer stem cells — an integrated concept of malignant tumour progression, Nat. Rev. Cancer, 2005, 5, 744–749

    Article  PubMed  CAS  Google Scholar 

  66. Mani S.A., Guo W., Liao M.J., Eaton E.N., Ayyanan A., Zhou A.Y., et al., The epithelial-mesenchymal transition generates cells with properties of stem cells, Cell, 2008, 133, 704–715

    Article  PubMed  CAS  Google Scholar 

  67. Thiery J.P., Epithelial-mesenchymal transitions in development and pathologies, Curr. Opin. Cell Biol., 2003, 15, 740–746

    Article  PubMed  CAS  Google Scholar 

  68. Wellner U., Schubert J., Burk U.C., Schmalhofer O., Zhu F., Sonntag A., et al., The EMT-activator ZEB1 promotes tumorigenicity by repressing stemness-inhibiting microRNAs, Nat. Cell Biol., 2009, 11, 1487–1495

    Article  PubMed  CAS  Google Scholar 

  69. Wang X.Q., Ongkeko W.M., Chen L., Yang Z.F., Lu P., Chen K.K., et al., Octamer 4 (Oct4) mediates chemotherapeutic drug resistance in liver cancer cells through a potential Oct4-AKT-ATP-binding cassette G2 pathway, Hepatology, 2010, 52, 528–539

    Article  PubMed  CAS  Google Scholar 

  70. Frank N.Y., Margaryan A., Huang Y., Schatton T., Waaga-Gasser A.M., Gasser M., et al., ABCB5-mediated doxorubicin transport and chemoresistance in human malignant melanoma, Cancer Res., 2005, 65, 4320–4333

    Article  PubMed  CAS  Google Scholar 

  71. Gupta P.B., Onder T.T., Jiang G., Tao K., Kuperwasser C., Weinberg R.A., et al., Identification of selective inhibitors of cancer stem cells by high-throughput screening, Cell, 2009, 138, 645–659

    Article  PubMed  CAS  Google Scholar 

  72. Stefani G., Slack F.J., Small non-coding RNAs in animal development, Nat. Rev. Mol. Cell Biol., 2008, 9, 219–230

    Article  PubMed  CAS  Google Scholar 

  73. Chen J.F., Murchison E.P., Tang R., Callis T.E., Tatsuguchi M., Deng Z., Targeted deletion of Dicer in the heart leads to dilated cardiomyopathy and heart failure, Proc. Natl. Acad. Sci. U.S.A., 2008, 105, 2111–2116

    Article  PubMed  CAS  Google Scholar 

  74. Davis T.H., Cuellar T.L., Koch S.M., Barker A.J., Harfe B.D., McManus M.T., et al., Conditional loss of Dicer disrupts cellular and tissue morphogenesis in the cortex and hippocampus, J. Neurosci., 2008, 28, 4322–4330

    Article  PubMed  CAS  Google Scholar 

  75. Koralov S.B., Muljo S.A., Galler G.R., Krek A., Chakraborty T., Kanellopoulou C., et al., Dicer ablation affects antibody diversity and cell survival in the B lymphocyte lineage, Cell, 2008, 132, 860–874

    Article  PubMed  CAS  Google Scholar 

  76. Wang Y., Medvid R., Melton C., Jaenisch R., Blelloch R., DGCR8 is essential for microRNA biogenesis and silencing of embryonic stem cell self-renewal, Nat. Genet., 2007, 39, 380–385

    Article  PubMed  CAS  Google Scholar 

  77. Reinhart B.J., Slack F.J., Basson M., Pasquinelli A.E., Bettinger J.C., Rougvie A.E., et al., The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans, Nature, 2000, 403, 901–906

    Article  PubMed  CAS  Google Scholar 

  78. Wulczyn F.G., Smirnova L., Rybak A., Brandt C., Kwidzinski E., Ninnemann O., et al., Post-transcriptional regulation of the let-7 microRNA during neural cell specification, FASEB J., 2007, 21, 415–426

    Article  PubMed  CAS  Google Scholar 

  79. Takamizawa J., Konishi H., Yanagisawa K., Tomida S., Osada H., Endoh H., et al., Reduced expression of the let-7 microRNAs in human lung cancers in association with shortened postoperative survival, Cancer Res., 2004, 64, 3753–3756

    Article  PubMed  CAS  Google Scholar 

  80. Yu F., Yao H., Zhu P., Zhang X., Pan Q., Gong C., et al., let-7 regulates self renewal and tumorigenicity of breast cancer cells, Cell, 2007, 131, 1109–1123

    Article  PubMed  CAS  Google Scholar 

  81. Johnson C.D., Esquela-Kerscher A., Stefani G., Byrom M., Kelnar K., Ovcharenko D., et al., The let-7 microRNA represses cell proliferation pathways in human cells, Cancer Res., 2007, 67, 7713–7722

    Article  PubMed  CAS  Google Scholar 

  82. Shimono Y., Zabala M., Cho R.W., Lobo N., Dalerba P., Qian D., et al., Downregulation of miRNA-200c links breast cancer stem cells with normal stem cells, Cell, 2009, 138, 592–603

    Article  PubMed  CAS  Google Scholar 

  83. Godlewski J., Nowicki M.O., Bronisz A., Williams S., Otsuki A., Nuovo G., et al., Targeting of the Bmi-1 oncogene/stem cell renewal factor by microRNA-128 inhibits glioma proliferation and self-renewal, Cancer Res., 2008, 68, 9125–9130

    Article  PubMed  CAS  Google Scholar 

  84. Burk U., Schubert J., Wellner U., Schmalhofer O., Vincan E., Spaderna S., et al., A reciprocal repression between ZEB1 and members of the miR-200 family promotes EMT and invasion in cancer cells, EMBO Rep., 2008, 9, 582–589

    Article  PubMed  CAS  Google Scholar 

  85. Xu N., Papagiannakopoulos T., Pan G., Thomson J.A., Kosik K.S., MicroRNA-145 regulates OCT4, SOX2, and KLF4 and represses pluripotency in human embryonic stem cells, Cell, 2009, 137, 647–658

    Article  PubMed  CAS  Google Scholar 

  86. Landgraf P., Rusu M., Sheridan R., Sewer A., Iovino N., Aravin A., et al., A mammalian microRNA expression atlas based on small RNA library sequencing, Cell, 2007, 129, 1401–1414

    Article  PubMed  CAS  Google Scholar 

  87. Zaman M.S., Chen Y., Deng G., Shahryari V., Suh S.O., Saini S., et al., The functional significance of microRNA-145 in prostate cancer, Br. J. Cancer, 2010, 103, 256–264

    Article  PubMed  CAS  Google Scholar 

  88. Noguchi S., Mori T., Hoshino Y., Yamada N., Nakagawa T., Sasaki N., et al., Comparative study of anti-oncogenic microRNA-145 in canine and human malignant melanoma, J. Vet. Med. Sci., 2012, 74, 1–8

    Article  PubMed  CAS  Google Scholar 

  89. Barroso-del Jesus A., Lucena-Aguilar G., Menendez P., The miR-302-367 cluster as a potential stemness regulator in ESCs, Cell Cycle, 2009, 8, 394–398

    Article  PubMed  CAS  Google Scholar 

  90. Card D.A., Hebbar P.B., Li L., Trotter K.W., Komatsu Y., Mishina Y., et al., Oct4/Sox2-regulated miR-302 targets cyclin D1 in human embryonic stem cells, Mol. Cell Biol., 2008, 28, 6426–6238

    Article  PubMed  CAS  Google Scholar 

  91. Lin S.L., Chang D.C., Chang-Lin S., Lin C.H., Wu D.T., Chen D.T., et al., Mir-302 reprograms human skin cancer cells into a pluripotent ES-cell-like state, RNA, 2008, 14, 2115–2124

    Article  PubMed  CAS  Google Scholar 

  92. Ji Q., Hao X., Zhang M., Tang W., Yang M., Li L., et al., MicroRNA miR-34 inhibits human pancreatic cancer tumor-initiating cells, PLoS One, 2009, 4, e6816

    Article  PubMed  CAS  Google Scholar 

  93. Kato M., Paranjape T., Müller R.U., Nallur S., Gillespie E., Keane K., et al., The mir-34 microRNA is required for the DNA damage response in vivo in C. elegans and in vitro in human breast cancer cells, Oncogene, 2009, 28, 2419–2424

    Article  PubMed  CAS  Google Scholar 

  94. Kozaki K., Imoto I., Mogi S., Omura K., Inazawa J., Exploration of tumor-suppressive microRNAs silenced by DNA hypermethylation in oral cancer, Cancer Res., 2008, 68, 2094–2105

    Article  PubMed  CAS  Google Scholar 

  95. Bommer G.T., Gerin I., Feng Y., Kaczorowski A.J., Kuick R., Love R.E., et al., p53-mediated activation of miRNA34 candidate tumor-suppressor genes, Curr. Biol., 2007, 17, 1298–1307

    Article  PubMed  CAS  Google Scholar 

  96. Hermeking H., The miR-34 family in cancer and apoptosis, Cell Death Differ., 2010, 17, 193–199

    Article  PubMed  CAS  Google Scholar 

  97. Liu C., Kelnar K., Liu B., Chen X., Calhoun-Davis T., Li H., et al., The microRNA miR-34a inhibits prostate cancer stem cells and metastasis by directly repressing CD44, Nat. Med., 2011, 17, 211–215

    Article  PubMed  CAS  Google Scholar 

  98. Furuta M., Kozaki K.I., Tanaka S., Arii S., Imoto I., Inazawa J., miR-124 and miR-203 are epigenetically silenced tumor-suppressive microRNAs in hepatocellular carcinoma, Carcinogenesis, 2010, 31, 766–776

    Article  PubMed  CAS  Google Scholar 

  99. Saini S., Majid S., Yamamura S., Tabatabai L., Suh S.O., Shahryari V., et al., Regulatory Role of mir-203 in Prostate Cancer Progression and Metastasis, Clin. Cancer Res., 2011, 17, 5287–5298

    Article  PubMed  CAS  Google Scholar 

  100. Garzia L., Andolfo I., Cusanelli E., Marino N., Petrosino G., De Martino D., et al., MicroRNA-199b-5p impairs cancer stem cells through negative regulation of HES1 in medulloblastoma, PLoS One, 2009, 4, e4998

    Article  PubMed  CAS  Google Scholar 

  101. Iorio M.V., Visone R., Di Leva G., Donati V., Petrocca F., Casalini P., et al., MicroRNA signatures in human ovarian cancer, Cancer Res, 2007, 67, 8699–86707

    Article  PubMed  CAS  Google Scholar 

  102. Murakami Y., Yasuda T., Saigo K., Urashima T., Toyoda H., Okanoue T., et al., Comprehensive analysis of microRNA expression patterns in hepatocellular carcinoma and non-tumorous tissues, Oncogene, 2006, 25, 2537–2545

    Article  PubMed  CAS  Google Scholar 

  103. Zhang J., Luo N., Luo Y., Peng Z., Zhang T., Li S., microRNA-150 inhibits human CD133-positive liver cancer stem cells through negative regulation of the transcription factor c-Myb, Int. J. Oncol., 2012, 40, 747–756

    PubMed  CAS  Google Scholar 

  104. Chen C.Z., Li L., Lodish H.F., Bartel D.P., MicroRNAs modulate hematopoietic lineage differentiation, Science, 2004, 303, 83–86

    Article  PubMed  CAS  Google Scholar 

  105. Ji J., Yamashita T., Budhu A., Forgues M., Jia H.L., Li C., et al., Identification of microRNA-181 by genome-wide screening as a critical player in EpCAM-positive hepatic cancer stem cells, Hepatology, 2009, 50, 472–480

    Article  PubMed  CAS  Google Scholar 

  106. Clevers H., Wnt/beta-catenin signaling in development and disease, Cell, 2006, 127, 469–480

    Article  PubMed  CAS  Google Scholar 

  107. Wang Y, Yu Y., Tsuyada A., Ren X., Wu X., Stubblefield K., et al., Transforming growth factor-β regulates the sphere-initiating stem cell-like feature in breast cancer through miRNA-181 and ATM, Oncogene, 2011, 30, 1470–1480

    Article  PubMed  CAS  Google Scholar 

  108. Yu Z., Wang C., Wang M., Li Z., Casimiro M.C., Liu M., et al., A cyclin D1/microRNA 17/20 regulatory feedback loop in control of breast cancer cell proliferation, J. Cell Biol., 2008, 182, 509–517

    Article  PubMed  CAS  Google Scholar 

  109. Hayashita Y., Osada H., Tatematsu Y., Yamada H., Yanagisawa K., Tomida S, et al., A polycistronic microRNA cluster, miR-17-92, is overexpressed in human lung cancers and enhances cell proliferation, Cancer Res., 2005, 65, 9628–9632

    Article  PubMed  CAS  Google Scholar 

  110. Esquela-Kerscher A., Trang P., Wiggins J.F., Patrawala L., Cheng A., Ford L., et al., The let-7 microRNA reduces tumor growth in mouse models of lung cancer, Cell Cycle, 2008, 7, 759–764

    Article  PubMed  CAS  Google Scholar 

  111. Trang P., Medina P.P., Wiggins J.F., Ruffino L., Kelnar K., Omotola M., et al., Regression of murine lung tumors by the let-7 microRNA, Oncogene, 2010, 29, 1580–1587

    Article  PubMed  CAS  Google Scholar 

  112. Kota J., Chivukula R.R., O’Donnell K.A., Wentzel E.A., Montgomery C.L., Hwang H.W., et al., Therapeutic microRNA delivery suppresses tumorigenesis in a murine liver cancer model, Cell, 2009, 137, 1005–1017

    Article  PubMed  CAS  Google Scholar 

  113. Kumar M.S., Erkeland S.J., Pester R.E., Chen C.Y., Ebert M.S., Sharp P.A., et al., Suppression of non-small cell lung tumor development by the let-7 microRNA family, Proc. Natl. Acad. Sci. U.S.A., 2008, 105, 3903–3908

    Article  PubMed  CAS  Google Scholar 

  114. Ji Q., Hao X., Meng Y., Zhang M., Desano J., Fan D., et al., Restoration of tumor suppressor miR-34 inhibits human p53-mutant gastric cancer tumorspheres, BMC Cancer, 2008, 8, 266

    Article  PubMed  CAS  Google Scholar 

  115. Krützfeldt J., Rajewsky N., Braich R., Rajeev K.G., Tuschl T., Manoharan M., et al., Silencing of microRNAs in vivo with ‘antagomirs’, Nature, 2005, 438, 685–689

    Article  PubMed  CAS  Google Scholar 

  116. Gabriely G., Wurdinger T., Kesari S., Esau C.C., Burchard J., Linsley P.S., et al., MicroRNA 21 promotes glioma invasion by targeting matrix metalloproteinase regulators, Mol. Cell Biol., 2008, 28, 5369–5380

    Article  PubMed  CAS  Google Scholar 

  117. Anand S., Majeti B.K., Acevedo L.M., Murphy E.A., Mukthavaram R., Scheppke L., et al., MicroRNA-132-mediated loss of p120RasGAP activates the endothelium to facilitate pathological angiogenesis, Nat. Med., 2010, 16, 909–914

    Article  PubMed  CAS  Google Scholar 

  118. Zheng G., Ambros V., Li W.H., Inhibiting miRNA in Caenorhabditis elegans using a potent and selective antisense reagent, Silence, 2010, 1, 9

    Article  PubMed  CAS  Google Scholar 

  119. Krützfeldt J., Kuwajima S., Braich R., Rajeev K.G., Pena J., Tuschl T., et al., Specificity, duplex degradation and subcellular localization of antagomirs, Nucleic Acids Res., 2007, 35, 2885–2892

    Article  PubMed  CAS  Google Scholar 

  120. Owczarzy R., You Y., Groth C.L., Tataurov A.V., Stability and mismatch discrimination of locked nucleic acid-DNA duplexes, Biochemistry, 2011, 50, 9352–9367

    Article  PubMed  CAS  Google Scholar 

  121. Oh Y.K., Park T.G., siRNA delivery systems for cancer treatment, Adv. Drug Deliv. Rev., 2009, 61, 850–862

    Article  PubMed  CAS  Google Scholar 

  122. Broderick J.A., Zamore P.D., MicroRNA therapeutics, Gene Ther., 2011, 18, 1104–1110

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michal Wozniak.

About this article

Cite this article

Wozniak, M. microRNA in the control of stem-like phenotype of cancer cells. cent.eur.j.biol. 8, 931–942 (2013). https://doi.org/10.2478/s11535-013-0222-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11535-013-0222-9

Keywords

Navigation