Skip to main content
Log in

Germination ecology of Ambrosia artemisiifolia L. and Ambrosia trifida L. biotypes suspected of glyphosate resistance

  • Research Article
  • Published:
Central European Journal of Biology

Abstract

The germination ecology of Ambrosia artemisiifolia and A. trifida glyphosate susceptible biotypes sampled in marginal areas, was compared with that of the same species but different biotypes suspected of glyphosate resistance, common and giant ragweed, respectively. The suspected resistant biotypes were sampled in Roundup Ready® soybean fields. Within each weed species, the seeds of the biotype sampled in marginal area were significantly bigger and heavier than those of the biotype sampled in the soybean fields. A. artemisiifolia biotypes exhibited a similar dormancy and germination, while differences between A. trifida biotypes were observed. A. artemisiifolia biotypes showed similar threshold temperature for germination, whereas, the threshold temperature of the susceptible A. trifida biotype was half as compared to that of the resistant A. trifida biotype. No significant differences in emergence as a function of sowing depth were observed between susceptible A. artemisiifolia and suspected resistant A. trifida biotype, while at a six-cm seedling depth the emergence of the A. artemisiifolia susceptible biotype was 2.5 times higher than that of the A. trifida suspected resistant biotype. This study identified important differences in seed germination between herbicide resistant and susceptible biotypes and relates this information to the ecology of species adapted to Roundup Ready® fields. Information obtained in this study supports sustainable management strategies, with continued use of glyphosate as a possibility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Bridges D.C., Crop losses due to weeds in the United States. Weed Science Society of America, Champaign, IL, USA, 1992

    Google Scholar 

  2. Bassett I.J., Crompton C.W., The biology of Canadian weeds, 11: Ambrosia artemisiifolia L. and A. psilostachya, Can. J. Plant. Sci., 1975, 55, 463–476

    Article  Google Scholar 

  3. Bassett I.J., Crompton C.W., The biology of Canadian weeds, 55: Ambrosia trifida L, Can. J. Plant. Sci., 1982, 62, 1002–1010

    Article  Google Scholar 

  4. Harrison S.K., Regnier E.E., Schmoll J.T., Webb J., Competition and fecundity of Ambrosia trifida in Zea mays, Weed Sci., 2001, 49, 224–229

    Article  CAS  Google Scholar 

  5. Baysinger J.A., Sims B.D., Giant ragweed (Ambrosia trifida L.) interference in soybeans (Glycine max), Weed Sci., 1991, 39, 358–362

    Google Scholar 

  6. Webster T.M., Loux M.M., Regnier E.E., Harrison S.K., Giant ragweed (Ambrosia trifida) canopy architecture and interference studies in soybean (Glycine max), Weed Technol., 1994, 8, 559–564

    CAS  Google Scholar 

  7. Davis A., Renner K., Sprague C., Dyer L., Mutch D., Integrated Weed Management 2005, Michigan State University, 2005, http://www.msuweeds.com/michigans_worst_weeds/common_ragweed/

  8. Rybncek O., Jager S., Ambrosia (ragweed) in Europe, Allergy Clin. Immunol. Int., 2001, 13, 60–66

    Article  Google Scholar 

  9. Gergen P.J., Turkeltaub P.C., Kovar M.D., The prevalence of allergic skin test reactivity to eight common aeroallergens in the US population: results from the second National Health and Nutrition Examination survey, J. Allergy Clin. Immunol., 1987, 80, 669–679

    Article  PubMed  CAS  Google Scholar 

  10. Wiese A.M., Binning L.K., Calculating the threshold of temperature of development for weeds, Weed Sci., 1987, 35, 177–179

    Google Scholar 

  11. Willemsen R.W., Rice E.L., Mechanism of seed dormancy in Ambrosia artemisiifolia, Am. J. Bot., 1972, 59, 248–257

    Article  Google Scholar 

  12. Schutte B.J., Regnier E.E., Harrison S.K., Primary seed dormancy in Ambrosia trifida (giant ragweed), North Central Weed Sci. Soc., 2004, 59, 119

    Google Scholar 

  13. Davis W.E., Primary dormancy, after-ripening, and the development of secondary dormancy in embrios of Ambrosia trifida, Am. J. Bot., 1930, 17, 58–61

    Article  Google Scholar 

  14. Ballard T.O., Foley M.E., Bauman T.T., Germination, viability, and protein changes during cold stratification of giant ragweed (Ambrosia trifida L.) seed, J. Plant. Physiol., 1996, 149, 229–232

    Article  CAS  Google Scholar 

  15. Willemsen R.W., Effect of stratification temperature and germination temperature on germination and the induction of secondary dormancy in common ragweed seeds, Am. J. Bot., 1975a, 62, 1–5

    Article  Google Scholar 

  16. Willemsen R.W., Dormancy and germination of common ragweed seed in the field, Am. J. Bot., 1975b, 62, 639–643

    Article  Google Scholar 

  17. Baskin J.M., Baskin C.C., Ecophysiology of secondary dormancy in seeds of Ambrosia artemisiifolia, Ecology, 1980, 61, 475–480

    Article  Google Scholar 

  18. Bazzaz F.A., Secondary dormancy in the seeds of the common ragweed Ambrosia artemisiifolia, Bull. Torrey. Bot. Club, 1970, 97, 302–305

    Article  Google Scholar 

  19. Abul-Fatih H.A., Bazzaz F.A., The biology of Ambrosia trifida L. II. Germination, emergence and survival, New Phytol., 1979, 83, 817–827

    Article  Google Scholar 

  20. Pickett S.T., Baskin J.M., The role of temperature and light in the germination behavior of Ambrosia artemisiifolia, Bull. Torrey. Bot. Club, 1973, 100, 165–170

    Article  Google Scholar 

  21. Heap I., International survey of herbicide resistant plants, 2012, http://www.weedscience.org

  22. Seber G.A.F., Wild C.J., Nonlinear Regression, Wiley, New York, USA, 1989

    Book  Google Scholar 

  23. Sako Y., Regnier E.E., Daoust T., Fujimura K., Harrison S.K., Miller B., et al., Computer image analysis and classification of giant ragweed seeds, Weed Sci., 2001, 49, 738–745

    Article  CAS  Google Scholar 

  24. Dinelli G., Marotti I., Bonetti A., Minelli M., Catizone P., Barnes J., Physiological and molecular insight on the mechanisms of resistance to glyphosate in Conyza canadensis (L.) Cronq. Biotypes, Pestic. Biochem. Physiol., 2006, 86, 30–41

    Article  CAS  Google Scholar 

  25. Steel R.G.D., Torrie J.H., Principles and Procedure of Statistics: a Biometric Approach. 2nd edn, McGraw-Hill, New York, USA, 1980

    Google Scholar 

  26. Baxes G., Digital Image Processing, Wiley, New York, USA, 1994

    Google Scholar 

  27. Dinelli G., Marotti I., Bonetti A., Catizone P., Urbano J.M., Barnes J., Physiological and molecular bases of glyphosate resistance in Conyza bonariensis biotypes from Spain, Weed Res., 2008, 48, 1–9

    Article  Google Scholar 

  28. Urbano J.M., Borrego A., Torres V., Leon J.M., Jimenez C., Dinelli G., Barnes J., Glyphosateresistant hairy fleabane (Conyza bonariensis) in Spain, Weed Technol., 2007, 21, 396–401

    Article  CAS  Google Scholar 

  29. Perez-Jones A., Park K.W., Polge N., Colquhoun J., Mallory-Smith C.A., Investigating the mechanisms of glyphosate resistance in Lolium multiflorum, Planta, 2007, 226, 395–404

    Article  PubMed  CAS  Google Scholar 

  30. Powles S.B., Lorraine-Colwill D.F., Dellow J.J., Preston C., Evolved resistance to glyphosate in rigid ryegrass (Lolium rigidum) in Australia, Weed Sci., 1998, 46, 604–607

    CAS  Google Scholar 

  31. Lee L.J., Ngim J., A first report of glyphosateresistant goosegrass (Elusine indica (L) Gaertn) in Malaysia, Pest. Manag. Sci., 2000, 56, 336–339

    Article  CAS  Google Scholar 

  32. Jordan D.L., York A.C., Griffin J.L., Clay P.A., Vidrine P.R., Reynolds D.B., Influence of application variables on efficacy of glyphosate, Weed Technol., 1997, 11, 354–362

    CAS  Google Scholar 

  33. Arnold J.C.D., Shaw R., Scharer S.M., Influence of application timing on efficacy of glyphosate in Roundup Ready soybean, Proc. South. Weed Sci. Soc., 1997, 50, 176–177

    Google Scholar 

  34. Hennen S., Scursoni J., Forcella F., Delayed weed emergence and escape from control in glyphosatetolerant soybean, North Central Weed Sci. Soc., 2002, 57, 126

    Google Scholar 

  35. Payne S.A., Oliver L.R., Weed control programs in drilled glyphosate-resistant soybean, Weed Technol., 2000, 14, 413–422

    Article  CAS  Google Scholar 

  36. Scursoni J.A., Forcella F., Gunsolus J., Weed escapes and delayed weed emergence in glyphosate-resistant soybean, Crop. Prot., 2007, 26, 212–218

    Article  CAS  Google Scholar 

  37. Di Tommaso A., Germination behaviour of common ragweed (Ambrosia artemisiifolia) populations across a range of salinities, Weed Sci., 2004, 52, 1002–1009

    Article  Google Scholar 

  38. Mohler C.L., Galford A.E., Weed seedling emergence and survival: separating the effects of seed position and soil modification by tillage, Weed Res., 1997, 37, 147–155

    Article  Google Scholar 

  39. White S.S., Renner K.A., Menalled F.D., Landis D.A., Feeding preferences of weed seed predators and effect on weed emergence, Weed Sci., 2007, 55, 606–612

    Article  CAS  Google Scholar 

  40. Heggenstaller A.H., Menalled F.D., Liebman M., Westerman P.R., Seasonal patterns in postdispersal seed predation of Abutilon theophrasti and Setaria faberi in three-cropping systems, J. Appl. Ecol., 2006, 43, 999–1010

    Article  Google Scholar 

  41. Louda S.M., Predation in the Dynamics of Seed Generation. In: Leck M.A., Parker V.T., Simpson R.L. (eds) Ecology of Soil Seed Banks, Academic Press, New York, USA, 1989

    Google Scholar 

  42. Menalled F., Smith R., Dauer J., Fox T., Impact of agricultural management on carabid communities and weed seed predation, Agric. Ecosyst. Environ., 2007, 118, 49–54

    Article  Google Scholar 

  43. Brust G.E, House G.I., Weed seed destruction by arthropods and rodents in low-input soybean agroecosystems, Am. Journal Alternative Agr, 1988, 3, 19–25

    Article  Google Scholar 

  44. Hulme P.E., Post-dispersal seed predation and seed bank persistence, Seed Sci. Res., 1998, 8, 513–519

    Article  Google Scholar 

  45. Zhishu X., Yushan W., Harris M., Zhibin Z., Spatial and temporal variation of seed predation and removal of sympatric large-seeded species in relation to innate seed traits in a subtropical forest, Southwest China, Forest Ecol. Manag., 2006, 222, 46–54

    Google Scholar 

  46. Moles A.T., Warton D.I., Westoby M., Do smallseeded species have higher survival through seed predation than large-seeded species? Ecology, 2003, 84, 3148–3161

    Article  Google Scholar 

  47. Harrison S.K., Regnier E.E., Schmoll J.T., Postdispersal predation of giant ragweed (Ambrosia trifida) seed in no-tillage corn, Weed Sci., 2003, 51, 955–964

    Article  CAS  Google Scholar 

  48. Mueller T.C., Massey J.H., Hayes R.M., Main C.L., Stewart C.N., Shikimate accumulates in both glyphosate sensitive and glyphosate-resistant horseweed (Conyza canadensis L. Cronq.), J. Agric. Food Chem., 2003, 51, 680–684

    Article  PubMed  CAS  Google Scholar 

  49. Pline-Srnic W., Technical performance of some commercial glyphosate-resistant crops, Pest. Manag. Sci., 2005, 61, 225–234

    Article  PubMed  CAS  Google Scholar 

  50. Stewart C.N., Another type of superweed? In: Stewart C.N. (ed) Genetically Modified Planet. Environmental Aspects of Genetically Engineered Plants, Oxford University Press, UK, 2004

    Google Scholar 

  51. Sandermann H., Plant biotechnology: ecological case studies on herbicide resistance, Trends Plant. Sci., 2006, 11, 324–328

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Dinelli, G., Marotti, I., Catizone, P. et al. Germination ecology of Ambrosia artemisiifolia L. and Ambrosia trifida L. biotypes suspected of glyphosate resistance. cent.eur.j.biol. 8, 286–296 (2013). https://doi.org/10.2478/s11535-013-0135-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11535-013-0135-z

Keywords

Navigation