Skip to main content
Log in

From macro to lab-scale: Changes in bacterial community led to deterioration of EBPR in lab reactor

  • Research Article
  • Published:
Central European Journal of Biology

Abstract

A laboratory scale sequencing batch reactor (SBR), fed with synthetic wastewater containing a mixture of organic compounds, was operated for nearly six months. Despite maintaining the same operational conditions, a deterioration of enhanced biological phosphorus removal (EBPR) occurred after 40 days of SBR operation. The Prel/Cupt ratio decreased from 0.28 to 0.06 P-mol C-mol−1, and C requirements increased from 11 to 32 mg C h−1 g−1 of mixed liquor suspended solids. A FISH analysis showed that the percentage of Accumulibacter in an overall community of polyphosphate accumulating organisms (PAOs) and glycogen accumulating organisms (GAOs) dropped from 93% to 13%. An increase in abundance of Gammaproteobacteria (from 2.6% to 22%) and Alphaproteobacteria (from 1.8% to 10%) was observed. The number of Competibacter increased from 0.5% to nearly 9%. Clusters 1 and 2 of Defluviicoccus-related GAOs, not detected before deterioration, constituted 35% and 27% of Alphaproteobacteria, respectively. We concluded that lab-scale experiments should not be extended implicitly to full-scale EBPR systems because some bacterial groups are detected mainlyin lab-scale reactors. Well-defined, lab-scale operational conditions reduce the number of ecological niches available to bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Seviour R.J., Mino T., Onuki M., The microbiology of biological phosphorus removal in activated sludge systems, FEMS Microbiol. Rev., 2003, 27, 99–127

    Article  PubMed  CAS  Google Scholar 

  2. Fukushima T., Uda N., Okamoto M., Onuki M., Satoh H., Mino T., Abundance of Candidatus ‘Accumulibacter phosphatis’ in enhanced biological phosphorus removal activated sludge acclimatized with different carbon sources, Microbes Environ., 2007, 22, 346–354

    Article  Google Scholar 

  3. Gebremariam S.Y., Beutel M.W., Christian D., Hess T.F., Research advances and challenges in the microbiology of enhanced biological phosphorus removal—a critical review, Water Environ. Res., 2011, 83, 195–219

    Article  PubMed  CAS  Google Scholar 

  4. Oehmen A., Lemos P.C., Carvalho G., Yuan Z., Keller J., Blackall L.L., et al., Advances in enhanced biological phosphorus removal: From micro to macro scale, Water Res., 2007, 41, 2271–2300

    Article  PubMed  CAS  Google Scholar 

  5. Okunuki S., Kawaharasaki M., Tanaka H., Kanagawa T., Changes in phosphorus removing performance and bacterial community structure in an enhanced biological phosphorus removal reactor, Water Res., 2004, 38, 2433–2439

    Article  CAS  Google Scholar 

  6. Satoh H., Ichihashi O., Onuki M., Mino T., Deterioration patterns of laboratory activated sludge processes intended for enhanced biological phosphorus removal, ARI Bull. Istanbul Techn. Univ., 2007, 55, 119–127

    Google Scholar 

  7. Saunders A.M., Oehmen A., Blackall L.L., Yuan Z., Keller J., The effect of GAOs (glycogen accumulating organisms) on anaerobic carbon requirements in full-scale Australian EBPR (enhanced biological phosphorus removal) plants, Water Sci. Technol., 2003, 47, 37–43

    PubMed  CAS  Google Scholar 

  8. Cech J.S., Hartman P., Glucose induced break down of enhanced biological phosphate removal, Environ. Technol., 1990, 11, 651–656

    Article  CAS  Google Scholar 

  9. Kong Y.H., Ong S.L., Ng W.J., Liu W.T., Diversity and distribution of a deeply branched novel proteobacterial group found in anaerobic-aerobic activated sludge processes, Environ. Microbiol., 2002, 4, 753–757

    Article  PubMed  CAS  Google Scholar 

  10. Nielsen A.T., Liu W.-T., Filipe C., Grady L., Molin M., Stahl D.A., Identification of a novel group of bacteria in sludge from a deteriorated biological phosphorus removal reactor, Appl. Environ. Microbiol., 1999, 65, 1251–1258

    PubMed  CAS  Google Scholar 

  11. Meyer R.L., Saunders A.M., Blackall L.L., Putative glycogen-accumulating organisms belonging to the Alphaproteobacteria identified through rRNA-based stable isotope probing, Microbiology, 2006, 152, 419–429

    Article  PubMed  CAS  Google Scholar 

  12. Wong M.-T., Tan F.M., Ng W.J., Liu W.-T., Identification and occurrence of tetrad-forming Alphaproteobacteria in anaerobic-aerobic activated sludge processes, Microbiology, 2004, 150, 3741–3748

    Article  PubMed  CAS  Google Scholar 

  13. McIlroy S., Seviour R.J., Elucidating further phylogenetic diversity among the Defluviicoccus-related glycogen-accumulating organisms in activated sludge, Environ. Microbiol. Rep., 2009, 1, 563–568

    Article  CAS  Google Scholar 

  14. McIlroy S.J., Nittami T, Seviour E.M., Seviour R.J., Filamentous members of cluster III Defluviicoccus have the in situ phenotype expected of a glycogen-accumulating organism in activated sludge, FEMS Microbiol. Ecol., 2010, 74, 248–256

    Article  PubMed  CAS  Google Scholar 

  15. He S., Gall D.L., McMahon K.D., “Candidatus Accumulibacter” population structure in enhanced biological phosphorus removal sludges as revealed by polyphosphate kinase genes, Appl. Environ. Microbiol., 2007, 73, 5865–5874

    Article  PubMed  CAS  Google Scholar 

  16. Peterson S.B., Warnecke F., Madejska J., McMahon K.D., Hugenholtz P., Environmental distribution and population biology of Candidatus Accumulibacter, a primary agent of biological phosphorus removal, Environ. Microbiol., 2008, 10, 2692–2703

    Article  PubMed  CAS  Google Scholar 

  17. Kong Y.H., Nielsen J.L., Nielsen P.H., Identity and ecophysiology of uncultured actinobacterial polyphosphate-accumulating organisms in full-scale enhanced biological phosphorus removal plants, Appl. Environ. Microbiol., 2005, 71, 4076–4085

    Article  PubMed  CAS  Google Scholar 

  18. Nguyen H.T., Le V.Q., Hansen A.A., Nielsen J.L., Nielsen P.H., High diversity and abundance of putative polyphosphate-accumulating Tetrasphaera-related bacteria in activated sludge systems, FEMS Microbiol. Ecol., 2011, 76, 256–267

    Article  PubMed  CAS  Google Scholar 

  19. Nielsen P.H., Mielczarek A.T., Kragelund C., Nielsen J.L., Saunders A.M., Kong Y., et al., A conceptual ecosystem model of microbial communities in enhanced biological phosphorus removal plants, Water Res., 2010, 44, 5070–5088

    Article  PubMed  CAS  Google Scholar 

  20. Brdjanovic D., Slamet A., van Loosdrecht M.C.M., Hooijmans C.M., Alaerts G.J., Heijnen J.J., Impact of excessive aeration on biological phosphorus removal from wastewater, Water Res., 1997, 32, 200–208

    Article  Google Scholar 

  21. Mulkerrins D., Dobson A.D., Colleran E., Parameters affecting biological phosphate removal from wastewaters, Environ. Int., 2004, 30, 249–259

    Article  PubMed  CAS  Google Scholar 

  22. Wang J.C., Park J.K., Effect of anaerobic-aerobic contact time on the change of internal storage energy in two different phosphorus-accumulating organisms, Water Environ. Res., 2011, 73, 436–443

    Article  Google Scholar 

  23. Botton S., van Heusden M., Parsons J.R., Smidt H., van Straalen N., Resilience of microbial systems towards disturbances, Crit. Rev. Microbiol., 2006, 32, 101–112

    Article  PubMed  CAS  Google Scholar 

  24. Curtis T.P., Head I.M., Graham D.W., Theoretical ecology for engineering biology, Environ. Sci. Technol., 2003, 37, 64A–70A

    Article  PubMed  Google Scholar 

  25. Konopka A., What is microbial community ecology? ISME J., 2009, 3, 1223–1230

    Article  PubMed  Google Scholar 

  26. Wojnowska-Baryła I., Cydzik-Kwiatkowska A., Zielińska M., The application of molecular techniques to the study of wastewater treatment systems, In: Cummings S.P. (Ed.), Bioremediation: Methods and Protocols, Methods in Molecular Biology. Vol. 599, Humana Press, 2010

  27. Dai Y., Yuan Z., Wang X., Oehmen A., Keller J., Anaerobic metabolism of Defluviicoccus vanus related glycogen accumulating organisms (GAOs) with acetate and propionate as carbon sources, Water Res., 2007, 41, 1885–1896

    Article  PubMed  CAS  Google Scholar 

  28. Kong Y.H., Beer M., Rees G.N., Seviour R.J., Functional analysis of microbial communities in aerobic-anaerobic sequencing batch reactors fed with different phosphorus/carbon (P/C) ratios, Microbiol.-SGM., 2002, 148, 2299–2307

    CAS  Google Scholar 

  29. Lu H., Oehmen A., Virdis B., Keller J., Yuan Z.G., Obtaining highly enriched cultures of Candidatus Accumulibacter phosphatis through alternating carbon sources, Water Res., 2006, 40, 3838–3848

    Article  PubMed  CAS  Google Scholar 

  30. Oehmen A., Vives M.T., Lu H., Yuan Z., Keller J., The effect of pH on the competition between polyphosphate-accumulating organisms and glycogen-accumulating organisms, Water Res., 2005, 39, 3727–3737

    Article  PubMed  CAS  Google Scholar 

  31. Oehmen A., Yuan Z.G., Blackall L.L., Keller J., Comparison of acetate and propionate uptake by polyphosphate accumulating organisms and glycogen accumulating organisms, Biotechnol. Bioeng., 2005, 91, 162–168

    Article  PubMed  CAS  Google Scholar 

  32. Oehmen A., Zeng R.J., Yuan Z., Keller J., Anaerobic metabolism of propionate by polyphosphate-accumulating organisms in enhanced biological phosphorus removal systems, Biotechnol. Bioeng., 2005, 91, 43–53

    Article  PubMed  CAS  Google Scholar 

  33. Oehmen A., Saunders A.M., Vives M.T., Yuan Z., Keller J., Competition between polyphosphate and glycogen accumulating organisms in enhanced biological phosphorus removal systems with acetate and propionate as carbon sources, J. Biotechnol., 2006, 123, 22–32

    Article  PubMed  CAS  Google Scholar 

  34. Tsai C.S., Liu W.T., Phylogenetic and physiological diversity of tetrad-forming organisms in deteriorated biological phosphorus removal systems, Water Sci. Technol., 2002, 46, 179–184

    PubMed  CAS  Google Scholar 

  35. Klimiuk E., Wojnowska-Baryła I., Kuczajowska-Zadrożna M., The influence of hydraulic retention time on the effectiveness of phosphate compounds removal in the Phoredox system, Acta Academie Agriculturae AC Technicae Olstenensis, 1996, 44, 55–70, (in Polish)

    Google Scholar 

  36. Bond P.L., Erhart R., Wagner M., Keller J., Blackall L.L., Identification of some of the major groups of bacteria in efficient and non-efficient biological phosphorus removal activated sludge systems, Appl. Environ. Microbiol., 1999, 65, 4077–4084

    PubMed  CAS  Google Scholar 

  37. Levantesi C., Serafim L.S., Crocetti G.R., Lemos P.C., Rossetti S., Blackall L.L., et al., Analysis of the microbial community structure and function of a laboratory scale enhanced biological phosphorus removal reactor, Environ. Microbiol., 2002, 4, 559–569

    Article  PubMed  CAS  Google Scholar 

  38. Clesceri L.S., Greenberg A.E.,. Trussell R.R., Standard methods for the examination of water and wastewater, 17th ed., American Public Health Association, American Water Works Association and Water Pollution Control Federation, Washington, DC, 1989

    Google Scholar 

  39. Nielsen P.H., Daims H., Lemmer H. FISH handbook for biological wastewater treatment, IWA Publishing, London, 2009

    Google Scholar 

  40. Amann R.I., Binder B.J., Olson R.J., Chisholm S.W., Devereux R., Stahl D.A., Combination of 16S rRNA-targeted oligonucleotide probes with flow cytometry for analysing mixed microbial populations, Appl. Environ. Microbiol., 1990, 56, 1919–1925

    PubMed  CAS  Google Scholar 

  41. Daims H., Brühl A., Amann R., Schleifer K.-H., Wagner M., The domain-specific probe EUB338 is insufficient for the detection of all Bacteria: development and evaluation of a more comprehensive probe set, Syst. Appl. Microbiol., 1999, 22, 434–444

    Article  PubMed  CAS  Google Scholar 

  42. Neef A., Application of in-situ identification of bactyeria for population analysis in complex microbial biocenosis [Anwendung der in situ Einzelzell-Identifizierung von Bakterien zur Populationsanalyse in komplesen mikrobiellen Biozönosen], PhD thesis, Technical University of Munich, Munich, Germany, 1997 (in German)

    Google Scholar 

  43. Manz W., Amann R., Ludwig W., Wagner M., Schleifer K.-H., Phylogenetic oligonucleotide probes for the major sub-classes of Proteobacteria: problems and solutions, Syst. Appl. Microbiol., 1992, 15, 593–600

    Article  Google Scholar 

  44. Lücker S., Steger D., Kjeldsen K.U., MacGregor B.J., Wagner M., Loy A., Improved 16S rRNA-targeted probe set for analysis of sulfate-reducing bacteria by fluorescence in situ hybridization, J. Microbiol. Meth., 2007, 69, 523–528

    Article  Google Scholar 

  45. Roller C., Wagner M., Amann R., Ludwig W., Schleifer K.-H., In situ probing of Gram-positive bacteria with high DNA G+C content using 23S rRNA- targeted oligonucleotides, Microbiology, 1994, 140, 2849–2858

    Article  PubMed  CAS  Google Scholar 

  46. Crocetti G.R., Hugenholtz P., Bond P.L., Schuler A., Keller J., Jenkins D., et al., Identification of polyphosphate-accumulating organisms and design of 16S rRNA-directed probes for their detection and quantitation, Appl. Environ. Microbiol., 2000, 66, 1175–1182

    Article  PubMed  CAS  Google Scholar 

  47. Collins T.J., ImageJ for microscopy, Biotechniques, 2007, 43, 25–30

    Article  PubMed  Google Scholar 

  48. Burow L.C., Kong Y.H., Nielsen J.L., Blackall L.L., Nielsen P.H., Abundance and ecophysiology of Defluviicoccus spp, glycogen accumulating organisms in full-scale wastewater treatment processes, Microbiol.-SGM., 2007, 153, 178–185

    Article  CAS  Google Scholar 

  49. Kong Y.H., Beer M., Seviour R.J., Lindrea K.C., Rees G.N., Structure and functional analysis of the microbial community in an aerobic: anaerobic sequencing batch reactor (SBR) with no phosphorus removal, Syst. Appl. Microbiol., 2001, 24, 597–609

    Article  PubMed  CAS  Google Scholar 

  50. Kong Y.H., Xia Y., Nielsen J.L., Nielsen P.H., Ecophysiology of a group of uncultured Gammaproteobacterial glycogen-accumulating organisms in full scale EBPR wastewater treatment plants, Environ. Microbiol., 2006, 8, 479–489

    Article  PubMed  CAS  Google Scholar 

  51. Hesselmann R.P., Werlen C., Hahn D., van der Meer J.R., Zehnder A.J., Enrichment, phylogenetic analysis and detection of a bacterium that performs enhanced biological phosphate removal in activated sludge, Syst. Appl. Microbiol., 1999, 22, 454–465

    Article  PubMed  CAS  Google Scholar 

  52. Flowers J.J., He S., Yilmaz S., Noguera D.R., McMahon K.D., Denitrification capabilities of two biological phosphorus removal sludges dominated by different ‘Candidatus Accumulibacter’ clades, Environ. Microbiol. Rep., 2009, 1, 583–588

    Article  PubMed  CAS  Google Scholar 

  53. He S., Gu A.Z., McMahon K.D., Fine-scale differences between Accumulibacter-like bacteria in enhanced biological phosphorus activated sludge, Water Sci. Technol., 2006, 54, 111–117

    PubMed  CAS  Google Scholar 

  54. Gu A.Z., Saunders A., Neethling J.B., Stensel H.D., Blackall L.L., Functionally relevant microorganisms to enhanced biological phosphorus removal performance at full-scale wastewater treatment plants in the United States, Water Environ. Res., 2008, 80, 688–698

    Article  PubMed  CAS  Google Scholar 

  55. Seviour R.J., Nielsen P.H. (Eds.), Microbial ecology of activated sludge, IWA Publishing, London, 2010

    Google Scholar 

  56. López-Vázquez C.M., Hooijmans C.M., Brdjanovic D., Gijzen H.J., Van Loosdrecht M.C.M., Factors affecting the microbial populations at full-scale enhanced biological phosphorus removal (EBPR) wastewater treatment plants in The Netherlands, Water Res., 2008, 42, 2349–2360

    Article  PubMed  Google Scholar 

  57. Okunuki S., Nakamura K., Kawaharasaki M., Tanaka H., Uchiyama H., Noda N., Quantification of Rhodocyclus-related and Actinobacterial polyphosphate-accumulating organisms in an enhanced biological phosphorus removal process using quenching probe PCR, Microbes Environ., 2007, 22, 106–115

    Article  Google Scholar 

  58. Wittebolle L., Marzorati M., Clement L., Balloi A., Daffonchio D., Heylen K., et al., Initial community evenness favours functionality under selective stress, Nature, 2009, 458, 623–626

    Article  PubMed  CAS  Google Scholar 

  59. Marzorati M., Wittebolle L., Boon N., Daffonchio D., Verstraete W., How to get more out of molecular fingerprints: practical tools for microbial ecology, Environ. Microbiol., 2008, 10, 1571–1581

    Article  PubMed  CAS  Google Scholar 

  60. Wong M.-T., Mino T., Seviour R.J., Onuki M., Liu W.T., In situ identification and characterization of the microbial community structure of full-scale enhanced biological phosphorous removal plants in Japan, Water Res., 2005, 39, 2901–2914

    Article  PubMed  CAS  Google Scholar 

  61. Beer M., Stratton H.M., Griffiths P.C., Seviour R.J., Which are the polyphosphate accumulating organisms in full-scale activated sludge enhanced biological phosphate removal systems in Australia?, J. Appl. Microbiol., 2006, 100, 233–243

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adam Muszyński.

About this article

Cite this article

Muszyński, A., Łebkowska, M., Tabernacka, A. et al. From macro to lab-scale: Changes in bacterial community led to deterioration of EBPR in lab reactor. cent.eur.j.biol. 8, 130–142 (2013). https://doi.org/10.2478/s11535-013-0116-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11535-013-0116-2

Keywords

Navigation