Skip to main content
Log in

Population genetics: the next stop for microbial ecologists?

  • Commentary
  • Published:
Central European Journal of Biology

Abstract

Microbes play key roles in the functioning of the biosphere. Still, our knowledge about their total diversity is very limited. In particular, we lack a clear understanding of the evolutionary dynamics occurring within their populations (i.e. among members of the same biological species). Unlike animals and plants, microbes normally have huge population sizes, high reproductive rates and the potential for unrestricted dispersal. As a consequence, the knowledge of population genetics acquired from studying animals and plants cannot be applied without extensive testing to microbes. Next generation molecular tools, like High Throughput Sequencing (e.g. 454 and Illumina) coupled to Single Cell Genomics, now allow investigating microbial populations at a very fine scale. Such techniques have the potential to shed light on several ecological and evolutionary processes occurring within microbial populations that so far have remained hidden. Furthermore, they may facilitate the identification of microbial species. Eventually, we may find an answer to the question of whether microbes and multicellular organisms follow the same or different rules in their population diversification patterns.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Green J. L., Bohannan B.J.M., Spatial scaling of microbial biodiversity, Trends Ecol Evol, 2006, 21, 501–507

    Article  PubMed  Google Scholar 

  2. Falkowski P.G., Fenchel T., Delong E.F., The microbial engines that drive Earth’s biogeochemical cycles, Science, 2008, 320, 1034–1039

    Article  PubMed  CAS  Google Scholar 

  3. Pedros-Alio C., Marine microbial diversity: can it be determined?, Trends Microbiol, 2006, 14, 257–263

    Article  PubMed  CAS  Google Scholar 

  4. Futuyma D.J., Evolutionary Biology, Sinauer Associates, Inc., Sunderland, Massachusetts, 1998

    Google Scholar 

  5. Coyne J.A., Orr H.A., Speciation, Sinauer Associates, Inc., Sunderland, Massachusetts, 2004

    Google Scholar 

  6. Dolan J.R., An introduction to the biogeography of aquatic microbes, Aquat Microb Ecol, 2005, 41, 39–48

    Article  Google Scholar 

  7. Snoke M.S., Berendonk T.U., Barth D., Lynch M., Large global effective population sizes in Paramecium, Mol Biol Evol, 2006, 23, 2474–2479

    Article  PubMed  CAS  Google Scholar 

  8. Newton R.J., Jones S.E., Helmus M.R., McMahon K.D., Phylogenetic ecology of the freshwater Actinobacteria acI Lineage, Appl Environ Microb, 2007, 73, 7169–7176

    Article  CAS  Google Scholar 

  9. Finlay B.J., Global dispersal of free-living microbial eukaryote species, Science, 2002, 296, 1061–1063

    Article  PubMed  CAS  Google Scholar 

  10. Pace N.R., A molecular view of microbial diversity and the biosphere, Science, 1997, 276, 734–740

    Article  PubMed  CAS  Google Scholar 

  11. Hughes Martiny J.B., Bohannan B.J.M., Brown J.H., Colwell R.K., Fuhrman J.A., Green J.L., et al., Microbial biogeography: putting microorganisms on the map, Nat Rev Microbiol, 2006, 4, 102–112

    Article  Google Scholar 

  12. Logares R., Does the global microbiota consist of a few cosmopolitan species?, Ecol Austral, 2006, 16, 85–90

    Google Scholar 

  13. Lopez-Garcia P., Moreira D., Tracking microbial biodiversity through molecular and genomic ecology, Res Microbiol, 2008, 159, 67–73

    Article  PubMed  CAS  Google Scholar 

  14. Medlin L.K., Lange M., Nothig E.M., Genetic diversity in the marine phytoplankton: a review and a consideration of Antarctic phytoplankton, Antarct Sci, 2000, 12, 325–333

    Article  Google Scholar 

  15. Rynearson T.A., Armbrust E.V., DNA fingerprinting reveals extensive genetic diversity in a field population of the centric diatom Ditylum brightwellii, Limnol Oceanogr, 2000, 45, 1329–1340

    Article  Google Scholar 

  16. Shankle A.M., Mayali X., Franks P.J.S., Temporal patterns in population genetic diversity of Prorocentrum micans (Dinophyceae), J Phycol, 2004, 40, 239–247

    Article  CAS  Google Scholar 

  17. Evans K.M., Kuhn S.F., Hayes P.K., High levels of genetic diversity and low levels of genetic differentiation in North Sea Pseudo-nitzschia pungens (Bacillariophyceae) populations, J Phycol, 2005, 41, 506–514

    Article  CAS  Google Scholar 

  18. Iglesias-Rodriguez M.D., Schofield O.M., Batley J., Medlin L.K., Hayes P.K., Intraspecific genetic diversity in the marine coccolithophore Emiliania huxleyi (Prymnesiophyceae): The use of microsatellite analysis in marine phytoplankton population studies, J Phycol, 2006, 42, 526–536

    Article  CAS  Google Scholar 

  19. Nagai S., Lian C., Yamaguchi S., Hamaguchi M., Matsuyama Y., Itakura S., et al., Microsatellite markers reveal population genetic structure of the toxic dinoflagellate Alexandrium tamarense (Dinophyceae) in Japanese coastal waters, J Phycol, 2007, 43, 43–54

    Article  CAS  Google Scholar 

  20. Logares R., Boltovskoy A., Bensch S., Laybourn-Parry J., Rengefors K., Genetic Diversity Patterns in Five Protist Species Occurring in Lakes, Protist, 2009, 160, 301–317

    Article  PubMed  CAS  Google Scholar 

  21. Mes T.H.M., Microbial diversity — insights from population genetics, Environ Microbiol, 2008, 10, 251–264

    PubMed  CAS  Google Scholar 

  22. Rynearson T.A., Armbrust E.V., Genetic differentiation among populations of the planktonic marine diatom Ditylum brightwellii (Bacillariophyceae), J Phycol, 2004, 40, 34–43

    Article  Google Scholar 

  23. Lilly E.L., Halanych K.M., Anderson D.M., Phylogeny, biogeography, and species boundaries within the Alexandrium minutum group, Harmful Algae, 2005, 4, 1004–1020

    Article  CAS  Google Scholar 

  24. Harnstrom K., Ellegaard M., Andersen T.J., Godhe A., Hundred years of genetic structure in a sediment revived diatom population, Proc Natl Acad Sci USA, 2011, 108, 4252–4257

    Article  PubMed  Google Scholar 

  25. Wilson A.E., Sarnelle O., Neilan B.A., Salmon T.P., Gehringer M.M., Hay M.E., Genetic variation of the bloom-forming cyanobacterium Microcystis aeruginosa within and among lakes: Implications for harmful algal blooms, Appl Environ Microb, 2005, 71, 6126–6133

    Article  CAS  Google Scholar 

  26. Hunt D.E., David L.A., Gevers D., Preheim S.P., Alm E.J., Polz M.F., Resource partitioning and sympatric differentiation among closely related bacterioplankton, Science, 2008, 320, 1081–1085

    Article  PubMed  CAS  Google Scholar 

  27. Logares R., Rengefors K., Kremp A., Shalchian-Tabrizi K., Boltovskoy A., Tengs T., et al., Phenotypically different microalgal morphospecies with identical ribosomal DNA: A case of rapid adaptive evolution?, Microb Ecol, 2007, 53, 549–561

    Article  PubMed  CAS  Google Scholar 

  28. Logares R., Daugbjerg N., Boltovskoy A., Kremp A., Laybourn-Parry J., Rengefors K., Recent evolutionary diversification of a protist lineage, Environ Microbiol, 2008, 10, 1231–1243

    Article  PubMed  CAS  Google Scholar 

  29. Avise J.C., Phylogeography: the history and formation of species, Harvard University Press, Cambridge, Massachusetts, 2000

    Google Scholar 

  30. Massana R., Terrado R., Forn I., Lovejoy C., Pedros-Alio C., Distribution and abundance of uncultured heterotrophic flagellates in the world oceans, Environ Microbiol, 2006, 8, 1515–1522

    Article  PubMed  CAS  Google Scholar 

  31. Salcher M. M., Pernthaler J., Posch T., Seasonal bloom dynamics and ecophysiology of the freshwater sister clade of SAR11 bacteria ‘that rule the waves’ (LD12), ISME J, 2011, 5, 1242–1252

    Article  PubMed  CAS  Google Scholar 

  32. Logares R., Brate J., Heinrich F., Shalchian-Tabrizi K., Bertilsson S., Infrequent transitions between saline and fresh waters in one of the most abundant microbial lineages (SAR11), Mol Biol Evol, 2010, 27, 347–357

    Article  PubMed  CAS  Google Scholar 

  33. Binga E.K., Lasken R.S., Neufeld J.D., Something from (almost) nothing: the impact of multiple displacement amplification on microbial ecology, ISME J, 2008, 2, 233–241

    Article  PubMed  CAS  Google Scholar 

  34. Marcy Y., Ishoey T., Lasken R.S., Stockwell T.B., Walenz B.P., Halpern A.L., et al., Nanoliter reactors improve multiple displacement amplification of genomes from single cells, PLOS GENET, 2007, 3, e155

    Article  Google Scholar 

  35. Stepanauskas R., Sieracki M.E., Matching phylogeny and metabolism in the uncultured marine bacteria, one cell at a time, Proc Natl Acad Sci USA, 2007, 104, 9052–9057

    Article  PubMed  CAS  Google Scholar 

  36. Pinard R., de Winter A., Sarkis G.J., Gerstein M.B., Tartaro K.R., Plant R.N., et al., Assessment of whole genome amplification-induced bias through high-throughput, massively parallel whole genome sequencing, Bmc Genomics, 2006, 7, 216

    Article  PubMed  Google Scholar 

  37. Spits C., Le Caignec C., De Rycke M., Van Haute L., Van Steirteghem A., Liebaers I., et al., Optimization and evaluation of single-cell wholegenome multiple displacement amplification, Hum Mutat, 2006, 27, 496–503

    Article  PubMed  CAS  Google Scholar 

  38. Taylor J.W., Jacobson D.J., Kroken S., Kasuga T., Geiser D.M., Hibbett D.S., et al., Phylogenetic species recognition and species concepts in fungi, Fungal Genet Biol, 2000, 31, 21–32

    Article  PubMed  CAS  Google Scholar 

  39. Coleman A.W., Is there a molecular key to the level of “biological species” in eukaryotes? A DNA guide, Mol Phylogenet Evol, 2009, 50, 197–203

    Article  PubMed  CAS  Google Scholar 

  40. Mayr E., Systematics and the Origin of Species, Columbia University Press, New York, 1942

    Google Scholar 

  41. Ronaghi M., Uhlen M., Nyren P., A sequencing method based on real-time pyrophosphate, Science, 1998, 281, 363–365

    Article  PubMed  CAS  Google Scholar 

  42. Trombetti G.A., Bonnal R.J.P., Rizzi E., De Bellis G., Milanesi L., Data handling strategies for high throughput pyrosequencers, Bmc Bioinformatics, 2007, 8, S1–22

    Article  Google Scholar 

  43. Glenn T.C., Field guide to next-generation DNA sequencers, Mol Ecol Resour, 2011, 11, 759–769

    Article  PubMed  CAS  Google Scholar 

  44. Yoon H.S., Price D.C., Stepanauskas R., Rajah V.D., Sieraki M.E., Wilson W.H., et al., Single-Cell genomics reveals organismal interactions in uncultivated marine protists, Science, 2011, 332, 714–717

    Article  PubMed  CAS  Google Scholar 

  45. Dupont C.L., Chappell D., Logares R., Vila-Costa M., A hitchhiker’s guide to the new molecular toolbox for ecologists, In: P. Kemp (Ed.), Eco-DAS VIII Symposium Proceedings (11–16 October 2008, Hawaii, USA), ASLO, 2010, 17–29

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramiro Logares.

About this article

Cite this article

Logares, R. Population genetics: the next stop for microbial ecologists?. cent.eur.j.biol. 6, 887–892 (2011). https://doi.org/10.2478/s11535-011-0086-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11535-011-0086-9

Keywords

Navigation