Skip to main content
Log in

Low-dose ionizing radiation effects on differentiation of HL-60 cells

  • Research Article
  • Published:
Central European Journal of Biology

Abstract

The biological effects of low-dose radiation have attracted attention, but data are currently insufficient to fully understand the beneficial role of the phenomenon. In the present study, we have investigated the effects of low doses of gamma-irradiation alone and in combination with all-trans-retinoic acid (RA) on proliferation, apoptosis and differentiation of the human promyelocytic leukemia HL-60 cells. Changes in cell behavior and protein expression were determined with the use of light and fluorescent microscopy, immunocytochemical and Western blot analysis. Low-dose irradiation with 1–100 cGy caused a dose-dependent inhibition of HL-60 cell proliferation, and induced apoptosis and differentiation to granulocytes with an increase in the number of CD15-positive cells. Pre-irradiation with 1–100 cGy for 24 h before treatment with RA promoted apoptosis but did not impair RA-induced differentiation. Both processes were associated with a decrease in the expression of the proliferating cell nuclear antigen (PCNA), BCL-2, c-MYC, and changes in both cytosolic and nuclear levels of protein tyrosine-phosphorylation as well as protein kinase C alpha or beta isoforms. These results demonstrate the beneficial role of low-dose irradiation in modulating leukemia cell proliferation, differentiation and apoptosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Feinendegen L.E. Evidence for beneficial low level radiation effects and radiation hormesis, Br. J. Radiol., 2005, 78, 3–7

    Article  PubMed  CAS  Google Scholar 

  2. Feinendegen L.E., Loken M.K., Booz J., Muehlensiepen H., Sondhaus C.A., Bond V.P. Cellular mechanisms of protection and repair induced by radiation exposure and their consequences for cell system responses, Stem Cells, 1995, 13, 7–20

    PubMed  Google Scholar 

  3. Feinendegen L.E. The role of adaptive responses following exposure to ionizing radiation, Hum. Exp. Toxicol., 1999, 18, 426–432

    Article  PubMed  CAS  Google Scholar 

  4. Shadley J.D., Wiencke J.K. Induction of the adaptive response by X-rays is dependent on radiation intensity, Int. J. Radiat. Biol., 1989, 56, 107–118

    Article  PubMed  CAS  Google Scholar 

  5. Wolff S. The adaptive response in radiobiology evolving insights and implications, Environ. Health Perspect., 1998, 106, 277–283

    Article  PubMed  Google Scholar 

  6. Park S.H., Lee Y., Jeong K., Yoo S.Y., Cho C.K., Lee Y.S. Different induction of adaptive response to ionizing radiation in normal and neoplastic cells, Cell. Biol. Toxicol., 1999, 15, 111–119

    Article  PubMed  CAS  Google Scholar 

  7. Suzuki K., Komada S., Watanabe M. Extremely low-dose ionizing radiation causes activation of mitogen-activated protein kinase pathway and enhances proliferation of normal human diploid cells, Cancer Res., 2001, 61, 5396–5401

    PubMed  CAS  Google Scholar 

  8. Kim J.H., Hyun S.J., Yoon M.Y., Ji Y.H., Cho C.K., Yoo S.Y. Pretreatment of low-dose radiation reduces radiation-induced apoptosis in mouse lymphoma (EL4) cells, Arch. Pharmacol. Res., 1997, 20, 212–217

    Article  CAS  Google Scholar 

  9. Chen Z., Sakai K. Enhancement of radiation-induced apoptosis by preirradiation with low-dose X-rays in human leukemia MOLT-4 cells, J. Radiat. Res., 2004, 45, 239–243

    Article  PubMed  CAS  Google Scholar 

  10. Carter S., Auer K.L., Readon D.B., Birrel M., Fisher P.B., Valerie K., et al. Inhibition of the mitogen activated protein (MAP) kinase cascade potentiates cell killing by low dose ionizing radiation in A431 human squamous carcinoma cells, Oncogene, 1998, 16, 2787–2796

    Article  PubMed  CAS  Google Scholar 

  11. Milne D.M., Campbell D.G., Caudwell F.B., Meek D.W. Phosphorylation of the tumor suppressor protein p53 by mitogen-activated protein kinases, J. Biol. Chem., 1995, 269, 9253–9260

    Google Scholar 

  12. Kasid U., Suy S., Dent P., Ray S., Whiteside T.M., Strugill T.W. Activation of Raf by ionizing radiation, Nature, 1996, 382, 813–816

    Article  PubMed  CAS  Google Scholar 

  13. Verheij M., Ruiter G.A., Zerp C.F., van Blitterswijk W.J., Fuks Z., Haimovtz-Friedman A., et al. The role of the stress-activated kinase (SAPK/JNK) signaling pathway in radiation-induced apoptosis, Radiother. Oncol., 1998, 17, 225–232

    Article  Google Scholar 

  14. Prasad A.V., Mohan N., Chandrasekar B., Meltz M.L. Induction of transcription of “immediate early genes” by low-dose ionizing radiation, 1995, 143, 263–272

    CAS  Google Scholar 

  15. Bishay K., Ory K., Labeau J., Levalois C., Olivier C., Chevillard S. DNA-damage-related gene expression as biomarkers to assess cellular response after gamma irradiation of human lymphoblastoid cell line, Oncogene, 2000, 19, 916–923

    Article  PubMed  CAS  Google Scholar 

  16. Loree J., Koturbash I, Kutanzi K., Baker M., Pogribny I., Kovalchuk O. Radiation-induced molecular changes in rat mammary tissue: possible implications for radiation-induced carcinogenesis, Int. J. Radiat. Biol., 2006, 82, 805–815

    Article  PubMed  CAS  Google Scholar 

  17. Suzuki K., Kodama S., Watanabe M. Low-dose radiation effects and intracellular signaling pathways, Yakugaku Zasshi, 2006, 126, 859–867

    Article  PubMed  CAS  Google Scholar 

  18. Amundson S.A., Lee R.A., Koch-Paiz C.A., Bittner M.L., Meltzer P., Trent J.M., et al. Differential responses of stress genes to low dose-rate gamma irradiation, Mol. Cancer Res., 2003, 1, 445–452

    PubMed  CAS  Google Scholar 

  19. Chen S.L., Cai L., Li X.K., Liu S.Z. Low-dose whole body irradiation induces alterations of protein expression in mouse thymocytes, Toxicol. Lett., 1999, 105, 141–152

    Article  PubMed  CAS  Google Scholar 

  20. Chen S.L., Cai L., Meng Q.Y., Xu S., Wan H., Liu S.Z. Low dose Whole-Body irradiation (LD-WBI) changes protein expression of mouse thymocytes: effect of a LD-WBI-enhanced protein RIP10 on cell proliferation and spontaneous or radiation-induced thymocyte apoptosis, Toxicol. Sci., 2000, 55, 97–106

    Article  PubMed  CAS  Google Scholar 

  21. Stulik J., Koupilova K., Hernychova L., Macela A., Blacha V., Baaske C., et al. Modulation of signal transduction pathways and global protein composition of macrophages by ionizing radiation, Electrophoresis, 1999, 20, 962–968

    Article  PubMed  CAS  Google Scholar 

  22. Kastner P., Chan S. Function of RARα during the maturation of neutrophils, Oncogene, 2001, 20, 7178–7185

    Article  PubMed  CAS  Google Scholar 

  23. Collins S. The HL-60 promyelocytic leukemia cell line: Proliferation, differentiation and cellular oncogene expression, Blood, 1987, 70, 123–144

    Google Scholar 

  24. Drexler H.G., Quentmeir H., Mac Leod R.A., Uphoff C.C., Hu Z.B. Leukemia cell lines: in vitro models for the study of acute promyelocytic leukemia, Leukem. Res., 1995, 19, 681–691

    Article  CAS  Google Scholar 

  25. Slack J.I., Rusiniak M.A. Current issues in the management of acute promyelocytic leukemia, Ann. Hematol., 2000, 79, 227–238

    Article  PubMed  CAS  Google Scholar 

  26. Martin S.J., Bradley J.G., Cotter T.G. HL-60 cells induced to differentiate towards neutrophils subsequently die via apoptosis, Clin. Exp. Immunol., 1990, 79, 448–453

    Article  PubMed  CAS  Google Scholar 

  27. Collins S.J., Ruscetti F.W., Galagher R.E., Gallo R.C. Normal functional characteristics of cultured human promyelocytic leukemia cells (HL-60) after induction of differentiation by dimethylsulfoxide, J. Exp. Med., 1979, 49, 969–974

    Article  Google Scholar 

  28. Mercille S., Massie B. Induction of apoptosis in nutrient-deprived cultures of hybridoma and myeloma cells, Biotechnol. Bioingeneer., 1994, 44, 1140–1154

    Article  CAS  Google Scholar 

  29. Watson R.W., Rotstein O.D., Parodo J., Bitar R., Hackam D., Marshall J.C. Granulocytic differentiation of HL-60 cells results in spontaneous apoptosis mediated by increase caspase expression, FEBS Lett., 1997, 412, 603–609

    Article  PubMed  CAS  Google Scholar 

  30. Kuerbitz S.J., Plunkett B.S., Walsh W.V., Kastan M.B. Wilde-type p53 is a cell cycle checkpoint determinant following irradiation, Proc. Natl. Acad. Sci. USA, 1992, 89, 7491–7495

    Article  PubMed  CAS  Google Scholar 

  31. Livingstone L.R., White A., Sprouse J., Livanos E., Jacks T., Tisty T.D. Altered cell cycle arrest and gene amplification potential accompany loss of wilde-type p53, Cell, 1992, 70, 923–935

    Article  PubMed  CAS  Google Scholar 

  32. O’Connor P.M., Jackman J., Jondle D., Bhatia K., Magrath I., Kohn K.W. Role of p53 tumor suppressor gene in cell cycle arrest and radiosensitivity of Burkit’s lymphoma cell lines, Cancer Res., 1993, 53, 4776–4780

    PubMed  Google Scholar 

  33. Han Z., Chatterjee D., He D.M., Early J., Pantazis P., Wyche J.H., et al. Evidence for a G2 checkpoint in p53-independent apoptosis induction by X-irradiation, Mol. Cell Biol., 1995, 15, 5849–5857

    PubMed  CAS  Google Scholar 

  34. Nagy L., Thomazy V.A., Shipley G.L., Fesus L., Lamph W., Heyman R.A, et al. Activation of retinoid X receptors induces apoptosis in HL-60 cell line, Mol. Cell Biol., 1995, 15, 3540–3551

    PubMed  CAS  Google Scholar 

  35. Ohashi M., Iwase W.M., Nagumo M. Changes in susceptibility to Fas-mediated apoptosis during differentiation of HL-60 cells, J. Leuk. Biol., 2000, 67, 374–380

    CAS  Google Scholar 

  36. Salih H.R., Starling G.C., Brandl S. Differentiation of promyelocytic leukemia: alterations in Fas (CD95/Apo-1) and Fas Ligand (CD178) expression, Br. J. Haematol., 2002, 117, 76–85

    Article  PubMed  CAS  Google Scholar 

  37. Rezacova M., Vavrova J., Vokurkova D., Tichy A., Knizek J., Psutka J. The importance of abrogation of G2-phase arrest in combined effect of TRAIL and ionizing radiation, Acta Biochim. Pol., 2005, 52, 889–895

    PubMed  CAS  Google Scholar 

  38. Di Pietro R., Secchiero P., Rana R., Gibellini D., Visani G., Bermis K., et al. Ionizing radiation sensitizes erythroleucemic cells but not normal erythroblasts to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-mediated cytotoxicity by selective up-regulation of TRAIL-R1, Blood, 2001, 97, 2596–2603

    Article  PubMed  Google Scholar 

  39. Jonsson Z.O., Hubschner U. Proliferating cell nuclear antigen: more than a clamp for DNA polymerase, Bioassays, 1997, 19, 967–975

    Article  CAS  Google Scholar 

  40. Prosperi E. Multiple roles of the proliferating cell nuclear antigen: DNA replication, repair and cell cycle control, Progr. Cell Cycle Res., 1997, 3, 193–210

    CAS  Google Scholar 

  41. Grzanka A., Skok Z., Janiak A., Grzanka D. The expression of proliferating cell nuclear antigen (PCNA) in leukemia cell lines HL-60 and K-562 at the light and electron microscope level, Neoplasma, 2000, 47, 288–293

    PubMed  CAS  Google Scholar 

  42. Sendler A., Kaffenberg W., Nuyken I., van Beuningen D. Proliferating kinetics and PCNA expression of HL-60 cells following ionizing irradiation and granulocytic differentiation, Cell Prolif., 1993, 6, 531–543

    Article  Google Scholar 

  43. Kobayashi M., Okamoto K., Namikawa T., Okabayashi T., Araki K. The changes of proliferating cell nuclear antigen and apoptosis of the MM46 mammary cancer cells of the mouse after single high-dose irradiation, Med. Mol. Morphol., 2005, 38, 181–188

    Article  PubMed  CAS  Google Scholar 

  44. Yang E., Korsmeyer S.J. Molecular thanatopsis: a discourse on the BCL2 family and cell death, Blood, 1996, 88, 386–401

    PubMed  CAS  Google Scholar 

  45. Kroemer G. The proto-oncogene bcl-2 and its role in regulating apoptotic cell death, Nat. Med., 1997, 3, 617–620

    Article  Google Scholar 

  46. Maung Z.T., MacLean F.R., Reid M.M., Pearson A.D.J, Proctor S.J., Hamilton P.J., et al. The relationship between bcl-2 expression and response to chemotherapy in acute leukaemia, Br. J. Haematol., 1994, 88, 105–109

    Article  PubMed  CAS  Google Scholar 

  47. Campos L., Rouault J.-P., Sabido O., Oriol P., Roubi N., Vasselon C., et al. High expression of bcl-2 protein in acute myeloid leukemia cells is associated with poor response in chemotherapy, Blood, 1993, 81, 3091–3096

    PubMed  CAS  Google Scholar 

  48. Andreef M., Jiang S., Zhang X., Konopleva M., Estrov Z., Snell V.E., et al. Expression of Bcl-2- related genes in normal and AML progenitors: changes induced by chemotherapy and retinoic acid, Leukemia, 1999, 13, 1881–1892

    Article  Google Scholar 

  49. Kumakura S., Ishikura H., Tsumura H., Nakashima A., Stato Y., Kobyashi S. Cell-cycle-independent down-regulation of BCL-2 protein expression in differentiating HL-60 cells, Leuk. Lymphoma, 2000, 36, 375–382

    Article  PubMed  CAS  Google Scholar 

  50. Ahmed N., Laverick L., Sammons J., Baumforth K.R., Hassan H.T. Effect of all-trans retinoic acid on chemotherapy induced apoptosis and down-regulation of Bcl-2 in human myeloid leukaemia CD34 positive cells, Leuk. Res., 1999, 8, 741–749

    Article  Google Scholar 

  51. Kariya S., Ogawa Y., Yoshida S., Yabuki M., Imajo Y., Utsumi K. X-irradiation enhances the expression of Bcl-2 in HL-60 cells: the resulting effects on apoptosis and radiosensitivity, Int. J. Mol. Med., 1999, 3, 145–152

    PubMed  CAS  Google Scholar 

  52. Bradbury D.A., Zhu Y.M., Russe N.H. Bcl-2 expression in acute myeloblastic leukaemia: relationship with autonomous growth and CD34 antigen expression, Leuk. Lymphoma, 1997, 24, 221–228

    PubMed  CAS  Google Scholar 

  53. Pelengaris S., Khan M., Evan G.I. Suppression of Myc-induced apoptosis in beta cells exposes multiple oncogenic properties of Myc and triggers carcinogenic progression, Cell, 2002, 109, 321–334

    Article  PubMed  CAS  Google Scholar 

  54. Henriksson M., Luscher B. Proteins of the Myc network: essential regulators of cell growth and differentiation, Adv. Cancer Res., 1996, 68, 109–182

    Article  PubMed  CAS  Google Scholar 

  55. Kumakura S., Ishikura H., Tsumura H., Iwata H., Endo J., Kobyashi S. c-Myc and Bcl-2 protein expression during the induction of apoptosis and differentiation in TNF alpha-treated HL-60 cells, Leuk. Lymphoma, 1996, 23, 383–394

    Article  PubMed  CAS  Google Scholar 

  56. Dimberg A., Bahram F., Karlberg I., Larsson L.-G., Nilsson K., Oberg F. Retinoic acid-induced cell cycle arrest of human myeloid cell lines is associated with sequential down-regulation of c-Myc and cyclin E and posttranscriptional upregulation of p27 Kip1, Blood, 2007, 99, 2199–2206

    Article  Google Scholar 

  57. MacLean K.H., Keller U.B., Rodriquez-Galindo C., Nilsson J.A., Cleveland J.L. c-Myc augments gamma irradiation-induced apoptosis by suppressing Bcl-XL, Mol. Cell Biol., 2003, 23, 7256–7270

    Article  PubMed  CAS  Google Scholar 

  58. Enomoto A., Suzuki N., Kang Y., Hirano K., Matsumoto Y., Zhu J., et al. Decreased c-Myc expression and its involvement in X-ray-induced apoptotic cell death of human T-cell leukaemia cell line MOLT-4, Int. J. Radiat. Biol., 2003, 79, 589–600

    Article  PubMed  CAS  Google Scholar 

  59. Uckun F.M., Tuel-Ahlgren L., Song C.W., Waddick K., Myers D.E., Kirihara T, et al. Ionizing radiation stimulates unidentified tyrosine-specific protein kinases in human B-lymphocyte precursors, triggering apoptosis and clonogenic cell death, Proc. Natl. Acad. Sci. USA, 1992, 89, 9005–9009

    Article  PubMed  CAS  Google Scholar 

  60. Treigyte G., Navakauskiene R., Kulyte A., Gineitis A., Magnusson K.-E. Tyrosine phosphorylation of cytoplasmic proteins in proliferating, differentiating, apoptotic HL-60 cells and blood neutrophils, Cell. Mol. Life Sci., 2000, 57, 1997–2008

    Article  PubMed  CAS  Google Scholar 

  61. Navakauskiene R., Treigyte G., Gineitis A., Magnusson K.-E. Identification of apoptotic tyrosine-phosphorylated proteins after etoposide or retinoic acid treatement, Proteomics, 2004, 4, 1029–1041

    Article  PubMed  CAS  Google Scholar 

  62. Komada F., Nishikawa M., Uemura Y., Morita K., Hidaka H. Expression of three major protein kinase C isozymes in various types of human leukemic cells, Cancer Res., 1991, 51, 4271–4278

    PubMed  CAS  Google Scholar 

  63. Savickiene J., Gineitis A., Shanbhag V.P., Stigbrand T. Protein kinase inhibitors exert stage specific and inducer dependent effects on HL-60 cell differentiation, Anticancer Res., 1995, 15, 687–962

    PubMed  CAS  Google Scholar 

  64. Ruvolo P.P., Deng X., Carr B.K., May S. A functional role for mitochondrial protein kinase Cα in Bcl2 phosphorylation and suppression of apoptosis, J. Biol. Chem., 1998, 273, 25436–25442

    Article  PubMed  CAS  Google Scholar 

  65. Wang H.G., Rapp U.R., Reed J.C. Bcl-2 targets the protein kinase Raf-1 to mitochondria, Cell, 1996, 87, 629–638

    Article  PubMed  CAS  Google Scholar 

  66. Gamard C.J., Blode G.C., Hannun Y.A., Obeid L.M. Specific role for protein kinase Cβ in cell differentiation, Cell Growth Differ., 1994, 5, 405–409

    PubMed  CAS  Google Scholar 

  67. Tonetti D., Henning-Chubb C., Yamanishi D., Huberman E. Protein kinase C-beta is required for macrophage differentiation of human HL-60 leukemia cells, J. Biol. Chem., 1994, 269, 23230–23235

    PubMed  CAS  Google Scholar 

  68. Laouar A., Glesne D., Huberman E. Involvement of protein kinase C-β and ceramide in tumor necrosis factor-α-induced but not Fas-induced apoptosis of human myeloid leukemia cells, J. Biol. Chem., 1999, 274, 23526–23534

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruta Navakauskiene.

About this article

Cite this article

Savickiene, J., Treigyte, G., Aleksandraviciene, C. et al. Low-dose ionizing radiation effects on differentiation of HL-60 cells. cent.eur.j.biol. 5, 600–612 (2010). https://doi.org/10.2478/s11535-010-0085-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11535-010-0085-2

Keywords

Navigation