Skip to main content
Log in

Einstein-Hopf drag, Doppler shift of thermal radiation and blackbody drag: Three perspectives on quantum friction

  • Research Article
  • Published:
Central European Journal of Physics

Abstract

The thermal friction force acting on an atom moving relative to a thermal photon bath has recently been calculated on the basis of the fluctuation-dissipation theorem. The thermal fluctuations of the electromagnetic field give rise to a drag force on an atom provided one allows for dissipation of the field energy via spontaneous emission. The drag force exists if the atomic polarizability has a nonvanishing imaginary part. Here, we explore alternative derivations. The damping of the motion of a simple harmonic oscillator is described by radiative reaction theory (result of Einstein and Hopf), taking into account the known stochastic fluctuations of the electromagnetic field. Describing the excitations of the atom as an ensemble of damped harmonic oscillators, we identify the previously found expressions as generalizations of the Einstein-Hopf result. In addition, we present a simple explanation for blackbody friction in terms of a Doppler shift of the thermal radiation in the inertial frame of the moving atom: The atom absorbs blue-shifted photons from the front and radiates off energy in all directions, thereby losing energy. The original plus the two alternative derivations provide for additional confirmation of an intriguing quantum friction effect, and leave no doubt regarding its existence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. Mkrtchian, V. A. Parsegian, R. Podgornik, W. M. Saslow, Phys. Rev. Lett. 91, 220801 (2003)

    Article  ADS  Google Scholar 

  2. A. Einstein, L. Hopf, Ann. Phys. (Leipzig) 33, 1105 (1910)

    ADS  MATH  Google Scholar 

  3. J. M. McKinley, Am. J. Phys. 47, 602 (1979)

    Article  MathSciNet  ADS  Google Scholar 

  4. R. Grimm, M. Weidemüller, Y. B. Ovchinnikov, Adv. At. Mol. Opt. Phys. 42, 95 (2000)

    Article  Google Scholar 

  5. P. W. Milonni, Am. J. Phys. 49, 177 (1980)

    Article  MathSciNet  ADS  Google Scholar 

  6. S. M. Rytov, Y. A. Kravtsov, V. I. Tatarskii, Principles of Statistical Radiophysics, 3 (Springer, New York, 1989)

    Book  Google Scholar 

  7. L. P. Pitaevskii, E. M. Lifshitz, Statistical Physics, Part 2, (Pergamon Press, Oxford, UK, 1958)

    Google Scholar 

  8. T. G. Philbin, U. Leonhardt, New J. Phys. 11, 033035 (2009)

    Article  ADS  Google Scholar 

  9. J. B. Pendry, J. Phys.: Condens. Matter 9, 10301 (1997)

    Article  ADS  Google Scholar 

  10. J. B. Pendry, New J. Phys. 11, 033028 (2010)

    Article  Google Scholar 

  11. M. S. Tomassone, A. Widom, Phys. Rev. B 56, 4938 (1997)

    Article  ADS  Google Scholar 

  12. A. I. Volokitin, B. N. J. Persson, Phys. Rev. B 78, 155437 (2008)

    Article  ADS  Google Scholar 

  13. V. Mkrtchian, V. A. Parsegian, R. Podgornik, W. M. Saslow, Phys. Rev. Lett. 93, 059002 (2004)

    Article  ADS  Google Scholar 

  14. G. Łach, M. DeKieviet, U. D. Jentschura, Phys. Rev. Lett. 108, 043005 (2012)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulrich D. Jentschura.

About this article

Cite this article

Łach, G., DeKieviet, M. & Jentschura, U.D. Einstein-Hopf drag, Doppler shift of thermal radiation and blackbody drag: Three perspectives on quantum friction. centr.eur.j.phys. 10, 763–767 (2012). https://doi.org/10.2478/s11534-012-0035-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11534-012-0035-x

Keywords

Navigation