Skip to main content
Log in

Variable range hopping and/or phonon-assisted tunneling mechanism of electronic transport in polymers and carbon nanotubes

  • Review Article
  • Published:
Central European Journal of Physics

Abstract

We review and compare two models recently used to describe electronic transport in polymer fibers/nanotubes and carbon nanotubes including graphene nanoribbons, namely, variable range hopping (VRH) in different versions and their modifications on the one hand and electric-field-induced phonon-assisted tunneling (PhAT) on the other hand. The VRH model is mainly approved on behalf of the results of temperature dependences. However, the field dependencies of the conductivity in the framework of this model remain practically unexplained. At the same time, the PhAT model describes properly not only temperature dependence of conductivity measured in a wide temperature range, but also conductivity/current dependences on field strength using the same set of parameters characterizing the materials

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. B. Kaiser, Adv. Materials 13, 927 (2001)

    Article  Google Scholar 

  2. A. N. Aleshin, Phys. Solid State 52, 2307 (2010)

    Article  ADS  Google Scholar 

  3. N. F. Mott, Conduction in Non-Crystalline Materials, 2nd ed. (Clarendon Press, Oxford, 1993)

    Google Scholar 

  4. A. L. Efros, B. I. Shklovskii, J. Phys. C: Solid State Phys. 8, L49 (1975)

    Article  ADS  Google Scholar 

  5. P. Pipinys, A. Rimeika, V. Lapeika, J. Phys. D: Appl. Phys. 37, 828 (2004)

    Article  ADS  Google Scholar 

  6. P. Pipinys, A. Kiveris, J. Phys.: Condens. Matter 17, 4147 (2005)

    Article  ADS  Google Scholar 

  7. A. Kiveris, P. Pipinys, Phys. D 38, 3497 (2005)

    Article  ADS  Google Scholar 

  8. P. Pipinys, A. Rimeika, Cent. Eur. J. Phys. 6, 792 (2008)

    Article  Google Scholar 

  9. P. Ohlckers, P. Pipinys, Physica E 40, 2859 (2008)

    Article  ADS  Google Scholar 

  10. P. Pipinys, P. Ohlckers, Phys. Scr. 82, 035701 (2010)

    Article  ADS  Google Scholar 

  11. P. Ohlckers, P. Pipinys, J. Appl. Phys. 109, 083713 (2011)

    Article  ADS  Google Scholar 

  12. P. Pipinys, A. Kiveris, Lithuanian J. Phys. 48, 73 (2008)

    Article  Google Scholar 

  13. P. Pipinys, A. Kiveris, Physica B 403, 3730 (2008)

    Article  ADS  Google Scholar 

  14. Aloka Ghosh, S. Bhattacharya, D. P. Bhattacharya, A. Ghosh, J. Appl. Phys. 103, 083703 (2008)

    Article  ADS  Google Scholar 

  15. P.-Ch. Chang, J. G. Lu, Appl. Phys. Lett. 92, 212113 (2008)

    Article  ADS  Google Scholar 

  16. R. Kumar, N. Khare, Thin Solid Films 516, 1302 (2008)

    Article  ADS  Google Scholar 

  17. K. Dutta, S. De, S. K. De, J. Appl. Phys. 101, 093711 (2007)

    Article  ADS  Google Scholar 

  18. B. Nadra, G. Fethi, M. A. Belhadj, V. Valérie, M. Jean-Louis, J. Phys. D: Appl. Phys. 24, 205404 (2009)

    Google Scholar 

  19. K. D. Bozdag, N. R. Chiou, V. N. Prigodin, A. J. Epstein, Synth. Metals 160, 271 (2010)

    Article  Google Scholar 

  20. Sh. Ebrahim, A. H. Kashyout, M. Soliman, Curr. Apl. Phys. 9, 448 (2009)

    Article  Google Scholar 

  21. F. H. Cristovan, F. R. de Paula, Sh. G. Lemos, A. J. A. De Oliveira, E. C. Pereira, Synth. Metals, 159, 2188 (2009)

    Article  Google Scholar 

  22. A. Singh, et al., Appl. Phys. Lett. 95, 202106 (2009)

    Article  ADS  Google Scholar 

  23. L. Leontie, R. Danac, I. Druta, A. Carlescu, G. I. Rusu, Synth. Metals 160, 2526 (2010)

    Article  Google Scholar 

  24. J. P. Spatz, et al., Phys. Rev. B 50, 14888 (1994)

    Article  ADS  Google Scholar 

  25. C. Y. Nam, D. Tham, J. E. Fischer, Nano Lett. 5, 2029 (2005)

    Article  ADS  Google Scholar 

  26. Sh. Shekhar, L. Anjia, H. Matsui, S. I. Khondaker, Nanotechnology 22, 095202 (2011)

    Article  ADS  Google Scholar 

  27. M. Aggarwal, et al., Eur. Phys. J. B 60, 319 (2007)

    Article  ADS  Google Scholar 

  28. J. Aguilar-Hernández, K. Potje-Kamloth, J. Phys. D: Appl. Phys. 34, 1700 (2010)

    Article  ADS  Google Scholar 

  29. Y. Long, Zh. Hen, P. Zheng, N. Wang, Zh. Zhang, M. Wan, J. Appl. Phys. 93, 2962 (2003)

    Article  ADS  Google Scholar 

  30. D. Yu, C. Wang, B. L. Wehrenberg, Ph. Guyot-Sionnest, Phys. Rev. Lett. 92, 216802 (2004)

    Article  ADS  Google Scholar 

  31. J. Li, K. Fang, H. Qiu, Sh. Li, W. Mao. Synth. Metals 142, 107 (2004)

    Article  Google Scholar 

  32. E. Vitoratos, S. Sakkopoulos, E. Dalas, P. Malkaj, Ch. Anestis, Curr. Appl. Phys. 7, 578 (2007)

    Article  ADS  Google Scholar 

  33. J. Shen, Zh. Chen, N. Wang, H. Yan, G. Shi, A. Jin, Ch. Gu, Appl. Phys. Lett. 88, 253106 (2006)

    Article  ADS  Google Scholar 

  34. S. Shekhar, V. Prasad, S.V. Subramanyam, Phys. Lett. A 360, 390 (2006)

    Article  ADS  MATH  Google Scholar 

  35. K.G. Lisunov, E. Arushanov, H. Vinzelberg, G. Behr, J. Schumann, J. Appl. Phys. 97, 093706 (2005)

    Article  ADS  Google Scholar 

  36. M. Ghosh, A.K. Meikap, S.K. Chattopadhyay, S. Chatterjee, J. Phys. Chem Solids 62, 475 (2001)

    Article  ADS  Google Scholar 

  37. Y. Long, et al., Phys. Rev. B 71, 165412 (2005)

    Article  ADS  Google Scholar 

  38. J. M. Mativetsky, W.R. Datars, Physica B 324, 191 (2002)

    Article  ADS  Google Scholar 

  39. A. De, P. Sen, A. Poddar, A. Das, Synt. Metals 159, 1002 (2009)

    Article  Google Scholar 

  40. S. Maji, S. Mukhopadhyay, R. Gangopadhyay, A. De, Phys. Rev. B 75, 073202 (2007)

    Article  ADS  Google Scholar 

  41. M. Novak, L. Kokanovic, D. Babic, M. Bacani, A. Tonejc, Synth. Metals 159, 649 (2009)

    Article  Google Scholar 

  42. M.M. Fogler, S. Teber, B. I. Shklovskii, Phys. Rev. B 69, 035413 (2004)

    Article  ADS  Google Scholar 

  43. M. Taunk, A. Kapil, S. Chand, Solid. State Comm. 150, 1766 (2010)

    Article  ADS  Google Scholar 

  44. M. Taunk, A. Kapil, S. Chand, J. Mater. Sci.: Mater. Electron. 22, 136 (2011)

    Article  Google Scholar 

  45. S. Kivelson, Phys. Rev. Lett. 46, 1344 (1981)

    Article  ADS  Google Scholar 

  46. S. Kivelson, Phys. Rev. B 25, 3798 (1982)

    Article  ADS  Google Scholar 

  47. M.C. Anglada, N.F. Anglada, J.M. Ribo, V. Movaghar, Synth. Metals 78, 169 (1996)

    Article  Google Scholar 

  48. M. Jaiswal, W. Wang, K.A.S. Fernando, Y.-P. Sun, R. Menon, J. Phys.: Condens. Matter 19, 446006 (2007)

    Article  ADS  Google Scholar 

  49. D.P. Wang, D.E. Feldman, B.R. Perkins, A.J. Yin, G.H. Wang, J.M. Xu, A. Zaslavsky, Solid State Commun. 142, 287 (2007)

    Article  ADS  Google Scholar 

  50. A.B. Kaiser, Y.W. Park, Synth. Metals 152, 181 (2005)

    Article  Google Scholar 

  51. L.V. Keldysh, Zh. Eksp. Teor. Fiz. 34, 962 (1958)

    Google Scholar 

  52. L.V. Keldysh, Soviet Phys. JETP 6, 763 (1958)

    ADS  Google Scholar 

  53. A. Kiveris, S. Kudzmauskas, P. Pipinys, Phys. Status Solidi (a) 37, 321 (1976)

    Article  ADS  Google Scholar 

  54. P. Migliorato, C. Reita, G. Tallarida, M. Quinn, G. Fortunato, Solid-state Electron. 38, 2075 (1995)

    Article  ADS  Google Scholar 

  55. A. Rahman, M.K. Sanyal, J. Phys.: Condens. Matter 22, 175301 (2010)

    Article  ADS  Google Scholar 

  56. T. Taychatanapat, P. Jarillo-Herrero, Phys. Rev. Lett. 105, 166601 (2010)

    Article  ADS  Google Scholar 

  57. P. Pipinys, A. Kiveris, Natural Science 2, 979 (2010)

    Article  Google Scholar 

  58. V.N. Popov, L. Henrard, Ph. Lambin, Phys. Rev. B 72, 035436 (2005)

    Article  ADS  Google Scholar 

  59. Y.-Z. Long, et al., Chinese Phys. B 18, 2514 (2009)

    Article  ADS  Google Scholar 

  60. J.W. Yoo, et al., Phys. Rev. B 80, 205207 (2009)

    Article  ADS  Google Scholar 

  61. J.W. Yoo, H.W. Jang, V.N. Prigodin, C. Kao, C.B. Eom, A.J. Epstein, Synth. Metals 160, 216 (2010)

    Article  Google Scholar 

  62. V. Osinniy, S. Lysgaard, V.I. Kolkovsky, V. Pankratov, A. Nylandsted Larsen, Nanotechnology 20, 195201 (2009)

    Article  ADS  Google Scholar 

  63. V.N. Prigodin, J.W. Yoo, H.W. Jang, C. Kao, C.B. Eom, A.J. Epstein, J. Phys.: Conf. Series 292, 012001 (2011)

    Article  ADS  Google Scholar 

  64. K. Lee, R. Menon, C.O. Yoon, A.J. Heeger, Phys. Rev. B 52, 4779 (1995)

    Article  ADS  Google Scholar 

  65. J.M. Marulanda, A. Srivastava, Phys. Status Solidi (b) 245, 2558 (2008)

    Article  ADS  Google Scholar 

  66. M. Yamashita, Ch. Otani, M. Shimizu, H. Okuzaki, Appl. Phys. Lett. 99, 143307 (2011)

    Article  ADS  Google Scholar 

  67. S. Rols, et al., Phys. Rev. Lett. 85, 5222 (2000)

    Article  ADS  Google Scholar 

  68. J.-L. Sauvajol, E. Anglaret, S. Rols, L. Alvarez, Carbon, 40, 1697 (2002)

    Article  Google Scholar 

  69. U. Kuhlmann, H. Jantoljak, N. Pfander, P. Bernier, C. Journet, C. Thomsen, Chem. Phys. Lett. 294, 237 (1998)

    Article  ADS  Google Scholar 

  70. I. Miloševič, E. Dobardšič, M. Damnjanovič, Phys. Rev. B 72, 085426 (2005)

    Article  ADS  Google Scholar 

  71. P. Pipinys, A. Kiveris, Physica B 370, 168 (2005)

    Article  ADS  Google Scholar 

  72. P. Pipinys, A. Kiveris, Cent. Eur. J. Phys. 5, 83 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antanas Kiveris.

About this article

Cite this article

Pipinys, P., Kiveris, A. Variable range hopping and/or phonon-assisted tunneling mechanism of electronic transport in polymers and carbon nanotubes. centr.eur.j.phys. 10, 271–281 (2012). https://doi.org/10.2478/s11534-012-0005-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11534-012-0005-3

Keywords

Navigation