Skip to main content
Log in

Sharp weak-type inequalities for Fourier multipliers and second-order Riesz transforms

  • Research Article
  • Published:
Central European Journal of Mathematics

Abstract

We study sharp weak-type inequalities for a wide class of Fourier multipliers resulting from modulation of the jumps of Lévy processes. In particular, we obtain optimal estimates for second-order Riesz transforms, which lead to interesting a priori bounds for smooth functions on ℝd. The proofs rest on probabilistic methods: we deduce the above inequalities from the corresponding estimates for martingales. To obtain the lower bounds, we exploit the properties of laminates, important probability measures on the space of matrices of dimension 2×2, and some transference-type arguments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Astala K., Faraco D., Székelyhidi L. Jr., Convex integration and the Lp theory of elliptic equations, Ann. Sc. Norm. Super. Pisa Cl. Sci., 2008, 7(1), 1–50

    MATH  MathSciNet  Google Scholar 

  2. Bañuelos R., Bielaszewski A., Bogdan K., Fourier multipliers for non-symmetric Lévy processes, Banach Center Publ., 95, Polish Academy of Sciences, Warsaw, 2011, 9–25

    Google Scholar 

  3. Bañuelos R., Bogdan K., Lévy processes and Fourier multipliers, J. Funct. Anal., 2007, 250(1), 197–213

    Article  MATH  MathSciNet  Google Scholar 

  4. Bañuelos R., Osekowski A., Martingales and sharp bounds for Fourier multipliers, Ann. Acad. Sci. Fenn. Math., 2012, 37(1), 251–263

    Article  MATH  MathSciNet  Google Scholar 

  5. Bañuelos R., Wang G., Sharp inequalities for martingales with applications to the Beurling-Ahlfors and Riesz transformations, Duke Math. J., 1995, 80(3), 575–600

    Article  MATH  MathSciNet  Google Scholar 

  6. Boros N., Székelyhidi L. Jr., Volberg A., Laminates meet Burkholder functions, J. Math. Pures Appl., 2013, 100(5), 687–700

    Article  MathSciNet  Google Scholar 

  7. Burkholder D.L., An extension of a classical martingale inequality, In: Probability Theory and Harmonic Analysis, Ohio, May 10–12, 1983, Monogr. Textbooks Pure Appl. Math., 98, Marcel Dekker, New York, 1986, 21–30

    Google Scholar 

  8. Choi K.P., A sharp inequality for martingale transforms and the unconditional basis constant of a monotone basis in Lp(0, 1), Trans. Amer. Math. Soc., 1992, 330(2), 509–529

    MATH  MathSciNet  Google Scholar 

  9. Conti S., Faraco D., Maggi F., A new approach to counterexamples to L1 estimates: Korn’s inequality, geometric rigidity, and regularity for gradients of separately convex functions, Arch. Ration. Mech. Anal., 2005, 175(2), 287–300

    Article  MATH  MathSciNet  Google Scholar 

  10. Davis B., On the weak type (1, 1) inequality for conjugate functions, Proc. Amer. Math. Soc., 1974, 44(2), 307–311

    MATH  MathSciNet  Google Scholar 

  11. Dellacherie C., Meyer P.-A., Probabilities and Potential B, North-Holland Math. Stud., 72, North-Holland, Amsterdam, 1982

    MATH  Google Scholar 

  12. Geiss S., Mongomery-Smith S., Saksman E., On singular integral and martingale transforms, Trans. Amer. Math. Soc., 2010, 362(2), 553–575

    Article  MATH  MathSciNet  Google Scholar 

  13. Iwaniec T., Martin G., Riesz transforms and related singular integrals, J. Reine Angew. Math., 1996, 473, 25–57

    MATH  MathSciNet  Google Scholar 

  14. Janakiraman P., Best weak-type (p, p) constants, 1 < p < 2, for orthogonal harmonic functions and martingales, Illinois J. Math., 2004, 48(3), 909–921

    MATH  MathSciNet  Google Scholar 

  15. Kirchheim B., Rigidity and Geometry of Microstructures, Habilitation thesis, University of Leipzig, 2003, available at http://www.mis.mpg.de/publications/other-series/ln/lecturenote-1603.html

    Google Scholar 

  16. Kirchheim B., Müller S., Šverák V., Studying nonlinear pde by geometry in matrix space, In: Geometric Analysis and Nonlinear Partial Differential Equations, Springer, Berlin, 2003, 347–395

    Chapter  Google Scholar 

  17. Müller S., Šverák V., Convex integration for Lipschitz mappings and counterexamples to regularity, Ann. Math., 2003, 157(3), 715–742

    Article  MATH  Google Scholar 

  18. Osekowski A., Inequalities for dominated martingales, Bernoulli, 2007, 13(1), 54–79

    Article  MathSciNet  Google Scholar 

  19. Osekowski A., On relaxing the assumption of differential subordination in some martingale inequalities, Electron. Commun. Probab., 2011, 16, 9–21

    Article  MATH  MathSciNet  Google Scholar 

  20. Osekowski A., Sharp weak type inequalities for the Haar system and related estimates for nonsymmetric martingale transforms, Proc. Amer. Math. Soc., 2012, 140(7), 2513–2526

    Article  MATH  MathSciNet  Google Scholar 

  21. Osekowski A., Sharp logarithmic inequalities for Riesz transforms, J. Funct. Anal., 2012, 263(1), 89–108

    Article  MATH  MathSciNet  Google Scholar 

  22. Osekowski A., Logarithmic inequalities for Fourier multipliers, Math. Z., 2013, 274(1–2), 515–530

    Article  MATH  MathSciNet  Google Scholar 

  23. Pichorides S.K., On the best values of the constants in the theorems of M. Riesz, Zygmund and Kolmogorov, Studia Math., 1972, 44, 165–179

    MATH  MathSciNet  Google Scholar 

  24. Stein E.M., Singular Integrals and Differentiability Properties of Functions, Princeton Math. Ser., 30, Princeton University Press, Princeton, 1970

    MATH  Google Scholar 

  25. Székelyhidi L. Jr., Counterexamples to elliptic regularity and convex integration, In: The Interaction of Analysis and Geometry, Novosibirsk, August 23–September 3, 2004, Contemp. Math., 424, American Mathematical Society, Providence, 227–245

  26. Wang G., Differential subordination and strong differential subordination for continuous-time martingales and related sharp inequalities, Ann. Probab., 1995, 23(2), 522–551

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adam Osękowski.

About this article

Cite this article

Osękowski, A. Sharp weak-type inequalities for Fourier multipliers and second-order Riesz transforms. centr.eur.j.math. 12, 1198–1213 (2014). https://doi.org/10.2478/s11533-014-0401-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11533-014-0401-6

MSC

Keywords

Navigation