Skip to main content
Log in

Microwave-assisted and conventional sol-gel preparation of photocatalytically active ZnO/TiO2/glass multilayers

  • Research Article
  • Published:
Central European Journal of Chemistry

Abstract

For the first time a combination of microwaves and/or the conventional treatment method was used to dry and heat multilayered sol-gel ZnO/TiO2/glass structures. Compact or porous TiO2 films were deposited as a bottom layer, covered with a ZnO film.

The structures were characterized by X-ray Diffraction (XRD), Energy Dispersive X-ray Spectroscopy (EDX) and Scanning Electron Microscopy (SEM). Only peaks of wurtzite ZnO crystalline phase were registered on the X-Ray diffractograms.

The microwave irradiation leads to a formation of poorly crystallized multilayers with very small crystallites and enhanced surface roughness. This results in a better photocatalytic activity of these structures than the structures of the samples treated conventionally.

It was established that the morphology of the bottom titania layer affects the reaction of photocatalytic degradation of Malachite Green dye (MG). The structures with the compact bottom TiO2 films showed higher activities than those on porous TiO2 films.

This study offers an energy saving method of producing ZnO/TiO2/glass multilayered structures of various morphologies and pronounced photocatalytic properties. The method does not involve any calcination step, normally applied to achieve a good degree of crystallization. This makes the method suitable for protecting substrates of low thermal stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. X. Ma, P. Chen, D. Li, Y. Zhang, D. Yang, Appl. Phys. Lett. 91, 251109 (2007)

    Article  Google Scholar 

  2. Y. Liu, A. Liu, W. Liu, Z. Hu, Y. Sang, Appl. Surf. Sci. 257, 1263 (2010)

    Article  CAS  Google Scholar 

  3. D. Zhang, D. Brodie, Thin Solid Films 261, 334 (1995)

    Article  CAS  Google Scholar 

  4. I. Stambolova, K. Konstantinov, S. Vassilev, P. Peshev, Ts. Tsacheva, Mater. Chem. Phys. 63, 104 (2000)

    Article  CAS  Google Scholar 

  5. J. Lee, D. Lee, D. Lim, K. Yang, Thin Solid Films 515, 6094 (2007)

    Article  CAS  Google Scholar 

  6. Z. Bahsi, A. Oral, Opt. Mater. 29, 672 (2007)

    Article  Google Scholar 

  7. M. Yeber, J. Rodriguez, J. Freer, N. Duran, H. Mansilla, Chemosphere 41, 1193 (2000)

    Article  CAS  Google Scholar 

  8. M. Hoffmann, S. Martin, W. Choi, D. Bahnemann, Chem Rev. 95, 69 (1995)

    Article  CAS  Google Scholar 

  9. A. Fujishima, T. Rao, D. Tryk, J. Photochem. Photobiol. C 1, 1 (2000)

    Article  CAS  Google Scholar 

  10. N. Daneshvar, D. Salari, A.R. Khataee, J. Photochem. Photobiol. A 162, 317 (2004)

    Article  CAS  Google Scholar 

  11. D. Liao, C. Badour, B. Liao, J. Photochem. Photobiol. A 194, 11 (2008)

    Article  CAS  Google Scholar 

  12. W. Wu, Y. Cai, J. Chen, S. Shen, J. Mater. Sci. 41, 5845 (2006).

    Article  CAS  Google Scholar 

  13. S. Darzi, A. Mahjoub, J. Alloys Comp. 480, 805 (2009)

    Article  Google Scholar 

  14. G. Marci, V. Augugliano, M. Lopez-Munos, L. Palmisano, V. Rives, M. Schiavello, R. Tilley, A. Venezia, J. Phys.Chem. B 105, 1033 (2001)

    Article  CAS  Google Scholar 

  15. Z. Zhang, Y. Yuan, Y. Fang, L. Liang, H. Ding, L. Jin, Talanta 73, 523 (2007)

    Article  CAS  Google Scholar 

  16. J.T. Tian, L. Chen, Y. Yin, X. Wang, J. Dai, Z. Zhu, X. Liu, P. Wu, Surf. Coat. Technol. 204, 205 (2009)

    Article  CAS  Google Scholar 

  17. L. Zhao, M. Xia, Y. Liu, B. Zheng, Q. Jiang, J. Lian, Materials Transactions 53, 463 (2012)

    Article  CAS  Google Scholar 

  18. L. Zhao, M. Xia, Y. Liu, B. Zheng, Q. Jiang, J. Lian, J. Cryst. Growth 344, 1 (2012)

    Article  CAS  Google Scholar 

  19. S. Liu, J. Wightman, J. Appl. Chem. Biotechnol. 21, 168 (1971)

    Article  CAS  Google Scholar 

  20. J. Baldassari, S. Komarneni, E. Mariani, C. Villa, Mater. Res. Bull. 40, 2014 (2005)

    Article  CAS  Google Scholar 

  21. Y. Fang, J. Cheng, R. Roy, D. Roy, D. Agrawal, J. Mater Sci. 32, 4925 (1997)

    Article  CAS  Google Scholar 

  22. E. Thostenson, T. Chou, Composites, Part A 30, 1055 (1999)

    Article  Google Scholar 

  23. A. Peiro, C. Domingo, J. Peral, X. Domenech, E. Vigil, M. Hernandez-Fenollosa, M. Mollar, B. Mari, J. Ayllon, Thin Solid Films 483, 79 (2005)

    Article  CAS  Google Scholar 

  24. E. Vigil, J. Ayllon, A. Peiro, R. Rodriguez-Clemente, X. Domenech, J. Peral, Langmuir 17, 891 (2001)

    Article  CAS  Google Scholar 

  25. A. Peiro, E. Vigil, J. Peral, C. Domingo, X. Domenech, J. Ayllon, Thin Solid Films 411, 185 (2002)

    Article  CAS  Google Scholar 

  26. H. Zabova, J. Sobek, V. Cirkova, O. Solcova, S. Kment, M. Hajek, J. Solid State Chem. 182, 3387 (2009)

    Article  CAS  Google Scholar 

  27. D.W. Kim, S. Lee, H.S. Jing, J. Kim, H. Shin, K.S. Hong, Int. J. Hydr. Energy 32, 3137 (2007)

    Article  CAS  Google Scholar 

  28. M. Masahiko, H. Kenichi, Appl. Catal. A 302, 305 (2006)

    Article  Google Scholar 

  29. H. Tada, A. Hattori, Y. Tokihisa, K. Imai, N. Tohge, J Phys. Chem. B 104, 4586 (2000)

    Article  Google Scholar 

  30. T. Kawahara, Y. Konishi, H. Tada, N. Tohge, S. Ito, Langmuir 17, 7442 (2001)

    Article  CAS  Google Scholar 

  31. N. Kaneva, C. Dushkin, Bulg. Chem. Comm. 43, 259 (2011)

    CAS  Google Scholar 

  32. M. Hajek, In: A. Loupy (Ed.), Microwaves catalysis in organic synthesis, Microwaves in Organic Synthesis (Wiley-VCH Verlag, Weinheim, Germany, 2006) chapter 13, p. 615–652

  33. P.A. Thiessen, K. Meyer, Heinlicke Grundlagen der Tribochemie (Akad. Wiss. Berlin, Kl.Chem., Geol., Biol., Berlin, 2006)

    Google Scholar 

  34. N. Kaneva, I. Stambolova, V. Blaskov, Y. Dimitriev, S. Vassilev, C. Dushkin, J. Alloys Comp. 500, 252 (2010)

    Article  CAS  Google Scholar 

  35. N. Kaneva, D. Dimitrov, C. Dushkin, Appl. Surf. Sci. 257, 8113 (2011)

    Article  CAS  Google Scholar 

  36. Y. Gui, Sh. Li, J. Xu, Ch. Li, Microelectronics Journal 39, 1120 (2008)

    Article  CAS  Google Scholar 

  37. J. Liu, J. Cao, Z. Li, G. Ji, M. Cheng, Mater. Lett. 61, 4409 (2007)

    Article  CAS  Google Scholar 

  38. C.W. Zou, X.D. Yan, J. Han, R.Q. Chen, J.M. Bian, E. Haemmerle, W. Gao, Chem. Phys. Lett. 476, 84 (2009)

    Article  CAS  Google Scholar 

  39. D. Robert, A. Piscopo, O. Heintz, J. Weber, Catal. Today 54, 291 (1999)

    Article  CAS  Google Scholar 

  40. C. Su, B. Hong, C-M. Tseng, Catal. Today 96, 119 (2004)

    Article  CAS  Google Scholar 

  41. C. Guillard, B. Beaugiraud, C. Dutriez, J. Herrmann, H. Jaffrezic, N.J. Renault, M. Lacroix, Appl. Catal. B 39, 331 (2002)

    Article  CAS  Google Scholar 

  42. M. Benmami, K. Chhor, A. Kanaev, Chem.Phys. Lett. 422, 552 (2006)

    Article  CAS  Google Scholar 

  43. A. López, D. Acosta, A.I. Martínez, J. Santiago, Powder Technology 202, 111 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nina Kaneva.

About this article

Cite this article

Kaneva, N., Stambolova, I., Blaskov, V. et al. Microwave-assisted and conventional sol-gel preparation of photocatalytically active ZnO/TiO2/glass multilayers. cent.eur.j.chem. 11, 1055–1065 (2013). https://doi.org/10.2478/s11532-013-0240-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11532-013-0240-5

Keywords

Navigation