Central European Journal of Mathematics

, Volume 3, Issue 2, pp 273–281

Generalizations of coatomic modules


  • M. Tamer Koşan
    • Department of Mathematics, Faculty of Sciences and ArtsKocatepe University
  • Abdullah Harmanci
    • Department of Mathematics, Faculty of ScienceHacettepe University

DOI: 10.2478/BF02479203

Cite this article as:
Koşan, M.T. & Harmanci, A. centr.eur.j.math. (2005) 3: 273. doi:10.2478/BF02479203


For a ring R and a right R-module M, a submodule N of M is said to be δ-small in M if, whenever N+X=M with M/X singular, we have X=M. Let ℘ be the class of all singular simple modules. Then δ(M)=Σ{ LM| L is a δ-small submodule of M} = Rejm(℘)=∩{ NM: M/N∈℘. We call M δ-coatomic module whenever NM and M/N=δ(M/N) then M/N=0. And R is called right (left) δ-coatomic ring if the right (left) R-module RR(RR) is δ-coatomic. In this note, we study δ-coatomic modules and ring. We prove M=⊕i=1n Mi is δ-coatomic if and only if each Mi (i=1,…, n) is δ-coatomic.


δ-small modulecoatomic module

MSC (2000)


Copyright information

© Central European Science Journals 2005