Skip to main content
Log in

Neurogenic neuroprotection: Future perspectives

  • Review Article
  • Published:
Translational Neuroscience

Abstract

Introduction

Neurogenic neuroprotection elicited by deep brain stimulation is emerging as a promising approach for treating patients with ischemic brain lesions. In rats, stimulation of the fastigial nucleus, but not dentate nucleus, has been shown to reduce the volume of focal infarction. Protection of neural tissue is a rapid intervention that has a relatively long-lasting effect, rendering fastigial nucleus stimulation (FNS) a potentially valuable method for clinical application.

Methods

We review some of the main findings of animal experimental research from a clinical perspective. Results: Although the complete mechanisms of neuroprotection induced by FNS remain unclear, important data has been presented in the last two decades. The acute effect of electrical stimulation of the fastigial nucleus is likely mediated by a prolonged opening of potassium channels, and the sustained effect appears to be linked to inhibition of the apoptotic cascade.

Conclusion

A better understanding of the cellular and molecular mechanisms underlying neurogenic neuroprotection by stimulation of deep brain nuclei, with special attention to the fastigial nucleus, can contribute toward improving neurological outcomes in ischemic brain insults.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alkawi A., Kirmani J.F., Janjua N., Khatri I., Ahmed S., Divani A.A., et al., Advances in thrombolytics and mechanical devices for treatment of acute ischemic stroke, Neurol. Res., 2005, 27(Suppl. 1), S42–49

    PubMed  CAS  Google Scholar 

  2. Chang Y.C., Shyu W.C., Lin S.Z., Li H., Regenerative therapy for stroke, Cell Transplant., 2007, 16, 171–181

    PubMed  Google Scholar 

  3. Feigin V.L., Findlay M., Advances in subarachnoid hemorrhage, Stroke, 2006, 37, 305–308

    PubMed  Google Scholar 

  4. Ramani R., Hypothermia for brain protection and resuscitation, Curr. Opin. Anaesthesiol., 2006, 19, 487–491

    PubMed  Google Scholar 

  5. Fisher M., Henninger N., Translational research in stroke: taking advances in the pathophysiology and treatment of stroke from the experimental setting to clinical trials, Curr. Neurol. Neurosci. Rep., 2007, 7, 35–41

    PubMed  CAS  Google Scholar 

  6. Dorhout S.M., Rinkel G.J., Hop J.W., Algra A., van Gijn J., Antiplatelet therapy in aneurysmal subarachnoid hemorrhage: a systematic review, Stroke, 2003, 34, 285–289

    Google Scholar 

  7. Loch M.R., Management of cerebral vasospasm, Neurosurg. Rev., 2006, 29, 179–193

    Google Scholar 

  8. Roos Y., Rinkel G., Vermeulen M., Algra A., van Gijn J., Antifibrinolytic therapy for aneurysmal subarachnoid hemorrhage: a major update of a Cochrane review, Stroke, 2003, 34, 2308–2309

    PubMed  Google Scholar 

  9. Mistri A.K., Robinson T.G., Potter J.F., Pressor therapy in acute ischemic stroke: systematic review, Stroke, 2006, 37, 1565–1571

    PubMed  Google Scholar 

  10. Baron J.C., How healthy is the acutely reperfused ischemic penumbra?, Cerebrovasc. Dis., 2005, 20, S25–S31

    Google Scholar 

  11. Baron J.C., Mapping the ischaemic penumbra with PET: implications for acute stroke treatment, Cerebrovasc. Dis., 1999, 9, 193–201

    PubMed  CAS  Google Scholar 

  12. Ginsberg M.D., Pulsinelli W.A., The ischemic penumbra, injury thresholds, and the therapeutic window for acute stroke, Ann. Neurol., 1994, 36, 553–554

    PubMed  CAS  Google Scholar 

  13. Hakim A.M., The cerebral ischemic penumbra, Can. J. Neurol. Sci., 1987, 14, 557–559

    PubMed  CAS  Google Scholar 

  14. Kidwell C.S., Alger J.R., Saver J.L., Beyond mismatch: evolving paradigms in imaging the ischemic penumbra with multimodal magnetic resonance imaging, Stroke, 2003, 34, 2729–2735

    PubMed  Google Scholar 

  15. Kidwell C.S., Alger J.R., Saver J.L., Evolving paradigms in neuroimaging of the ischemic penumbra, Stroke, 2004, 35, 2662–2665

    PubMed  Google Scholar 

  16. Peek K.E., Lockwood A.H., Izumiyama M., Yap E.W., Labove J., Glucose metabolism and acidosis in the metabolic penumbra of rat brain, Metab. Brain Dis., 1989, 4, 261–272

    PubMed  CAS  Google Scholar 

  17. Hossmann K.A., Viability thresholds and the penumbra of focal ischemia, Ann. Neurol., 1994, 36, 557–565

    PubMed  CAS  Google Scholar 

  18. Glickstein S.B., Golanov E.V., Reis D.J., Intrinsic neurons of fastigial nucleus mediate neurogenic neuroprotection against excitotoxic and ischemic neuronal injury in rat, J. Neurosci., 1999, 19, 4142–4154

    PubMed  CAS  Google Scholar 

  19. Golanov E.V., Liu F., Reis D.J., Stimulation of cerebellum protects hippocampal neurons from global ischemia, Neuroreport, 1998, 9, 819–824

    PubMed  CAS  Google Scholar 

  20. Reis D.J., Golanov E.V., Galea E., Feinstein D.L., Central neurogenic neuroprotection: central neural systems that protect the brain from hypoxia and ischemia, Ann. NY Acad. Sci., 1997, 835, 168–186

    PubMed  CAS  Google Scholar 

  21. Reis D.J., Berger S.B., Underwood M.D., Khayata M., Electrical stimulation of cerebellar fastigial nucleus reduces ischemic infarction elicited by middle cerebral artery occlusion in rat, J. Cereb. Blood Flow Metab., 1991, 11, 810–818

    PubMed  CAS  Google Scholar 

  22. Reis D.J., Underwood M.D., Berger S.B., Khayata M., Zaiens N.I., Fastigial nucleus stimulation reduces the volume of cerebral infarction produced by occlusion of the middle cerebral artery in rat, In: Seylaz J., MacKenzie M.T. (Eds.), Neurotransmission and cerebrovascular function I, Elsevier, Amsterdam, 1989, 401–404

    Google Scholar 

  23. Reis D.J., Kobylarz K., Yamamoto S., Golanov E.V., Brief electrical stimulation of cerebellar fastigial nucleus conditions longlasting salvage from focal cerebral ischemia: conditioned central neurogenic neuroprotection, Brain Res., 1998, 780, 159–163

    PubMed  Google Scholar 

  24. Vieussens R., Neurographia universalis, Lyons, Jean Certe, 1684

    Google Scholar 

  25. Stilling B., Untersuchungen über den Bau des kleinen Gehirns des Menschen, T. Fischer (vol. 3), Cassel, 1864

  26. Achar N.K., Downman C.B., Autonomic responses evoked by stimulation of fastigial nuclei in the anaesthetized cat, J. Physiol. (Lond), 1969, 204, 130

    Google Scholar 

  27. Miura M., Reis D.J., A blood pressure response from fastigial nucleus and its relay pathway in brainstem, Am. J. Physiol., 1970, 219, 1330–1336

    PubMed  CAS  Google Scholar 

  28. Miura M., Reis D.J., Cerebellum: A pressor response elicited from the fastigial nucleus and its efferent pathway in brainstem, Brain. Res., 1969, 13, 595–599

    PubMed  CAS  Google Scholar 

  29. Yamamoto S., Golanov E.V., Reis D.J., Reductions in focal ischemic infarctions elicited from cerebellar fastigial nucleus do not result from elevations in cerebral blood flow, J. Cereb. Blood Flow Metab., 1993, 13, 1020–1024

    PubMed  CAS  Google Scholar 

  30. Golanov E.V., Zhou P., Neurogenic neuroprotection, Cell. Mol. Neurobiol., 2003, 23, 651–663

    PubMed  Google Scholar 

  31. Golanov E.V., Reis D.J., Cerebral cortical neurons with activity linked to central neurogenic spontaneous and evoked elevations in cerebral blood flow, Neurosci. Lett., 1996, 209, 101–104

    PubMed  CAS  Google Scholar 

  32. Garcia-March G., Sanchez-Ledesma M.J., Anaya J., Broseta J., Cerebral and carotid hemodynamic changes following cervical spinal cord stimulation, An experimental study, Acta Neurochir. Suppl. (Wien), 1989, 46, 102–104

    CAS  Google Scholar 

  33. Chida K., Iadecola C., Underwood M.D., Reis D.J., A novel vasodepressor response elicited from the rat cerebellar fastigial nucleus: the fastigial depressor response, Brain Res., 1986, 370, 378–382

    PubMed  CAS  Google Scholar 

  34. Iadecola C., Zhang F., Xu X., Inhibition of inducible nitric oxide synthase ameliorates cerebral ischemic damage, Am. J. Physiol., 1995, 268, 286–292

    Google Scholar 

  35. Nakai M., Iadecola C., Ruggiero D.A., Tucker L.W., Reis D.J., Electrical stimulation of cerebellar fastigial nucleus increases cerebral cortical blood flow without change in local metabolism: evidence for an intrinsic system in brain for primary vasodilation, Brain Res., 1983, 260, 35–49

    PubMed  CAS  Google Scholar 

  36. Bradley D.J., Pascoe J.P., Paton J.F., Spyer K.M., Cardiovascular and respiratory responses evoked from the posterior cerebellar cortex and fastigial nucleus in the cat, J. Physiol. (Lond.), 1987, 393, 107–121

    CAS  Google Scholar 

  37. Henry R.T., Connor J.D., Axons of passage may be responsible for fastigial nucleus pressor response, Am. J. Physiol., 1989, 257, 1436–1440

    Google Scholar 

  38. Haroian A.J., Massopust L.C., Young P.A., Cerebellothalamic projections in the rat: an autoradiographic and degeneration study, J. Comp. Neurol., 1981, 197, 217–236

    PubMed  CAS  Google Scholar 

  39. Batton R.R., Jayaraman A., Ruggiero B., Carpenter M.B., Fastigial efferent projections in the monkey: an autoradiographic study, J. Comp. Neurol., 1977, 174, 281–305

    PubMed  Google Scholar 

  40. Snider R.S., Maiti A., Cerebellar contributions to the Papez circuit, J. Neurosci. Res., 1976, 2, 133–146

    PubMed  CAS  Google Scholar 

  41. Dietrichs E., Haines D.E., Do the same hypothalamic neurons project to both amygdala and cerebellum?, Brain Res., 1986, 364, 241–248

    PubMed  CAS  Google Scholar 

  42. Glickstein S.B., Ilch C.P., Reis D.J., Golanov E.V., Stimulation of the subthalamic vasodilator area and fastigial nucleus independently protects the brain against focal ischemia, Brain Res., 2001, 912, 47–59

    PubMed  CAS  Google Scholar 

  43. Glickstein S.B., Ilch C.P., Golanov E.V., Electrical stimulation of the dorsal periaqueductal gray decreases volume of the brain infarction independently of accompanying hypertension and cerebrovasodilation, Brain Res., 2003, 994, 135–145

    PubMed  CAS  Google Scholar 

  44. Person R.J., Andrezik J.A., Dormer K.J., Foreman R.D., Fastigial nucleus projections in the midbrain and thalamus in dogs, Neuroscience, 1986, 18, 105–120

    PubMed  CAS  Google Scholar 

  45. Noda H., Sugita S., Ikeda Y., Afferent and efferent connections of the oculomotor region of the fastigial nucleus in the macaque monkey, J. Comp. Neurol., 1990, 302, 330–348

    PubMed  CAS  Google Scholar 

  46. Beitz A.J., The organization of afferent projections to the midbrain periaqueductal gray of the rat, Neuroscience, 1982, 7, 133–159

    PubMed  CAS  Google Scholar 

  47. Meller S.T., Dennis B.J., Efferent projections of the periaqueductal gray in the rabbit, Neuroscience, 1991, 40, 191–216

    PubMed  CAS  Google Scholar 

  48. Reichling D.B., Basbaum A.I., Collateralization of periaqueductal gray neurons to forebrain or diencephalon and to the medullary nucleus raphe magnus in the rat, Neuroscience, 1991, 42, 183–200

    PubMed  CAS  Google Scholar 

  49. Rinvik E., Wiberg M., Demonstration of a reciprocal connection between the periaqueductal gray matter and the reticular nucleus of the thalamus, Anat. Embryol., 1990, 181, 577–584

    PubMed  CAS  Google Scholar 

  50. Blix A.S., Cardiovascular adjustments to diving in mammals and birds, In: Renkin E.M., Michel C.C., The cardiovascular system, Bethesda, American Physiological Society, 1983, 917–945

  51. Norris D.G., Principles of magnetic resonance assessment of brain function, J. Magn. Reson. Imaging, 2006, 23, 794–807

    PubMed  Google Scholar 

  52. Toma K., Nakai T., Functional MRI in human motor control studies and clinical applications, Magn. Reson. Med. Sci., 2002, 1, 109–120

    PubMed  Google Scholar 

  53. Golanov E.V., Reis D.J., Contribution of oxygen-sensitive neurons of the rostral ventrolateral medulla to hypoxic cerebral vasodilatation in the rat, J. Physiol. (Lond.), 1996, 495, 201–216

    CAS  Google Scholar 

  54. Hamer J., Hoyer S., Alberti E., Weinhardt F., Cerebral blood flow and oxidative brain metabolism during and after moderate and profound arterial hypoxaemia, Acta Neurochir. (Wien), 1976, 33, 141–150

    CAS  Google Scholar 

  55. Sun M.K., Reis D.J., Differential responses of barosensitive neurons of rostral ventrolateral medulla to hypoxia in rats, Brain Res., 1993, 609, 333–337

    PubMed  CAS  Google Scholar 

  56. Underwood M.D., Iadecola D., Reis D.J., Lesions of the rostral ventrolateral medulla reduce the cerebrovascular response to hypoxia, Brain Res., 1994, 635, 217–223

    PubMed  CAS  Google Scholar 

  57. Sun M.K., Reis D.J., Differential responses of barosensitive neurons of rostral ventrolateral medulla to hypoxia in rats, Brain Res., 1993, 609, 333–337

    PubMed  CAS  Google Scholar 

  58. Sun M.K., Reis D.J., Hypoxic excitation of medullary vasomotor neurons in rats are not mediated by glutamate or nitric oxide, Neurosci. Lett., 1993, 157, 219–222

    PubMed  CAS  Google Scholar 

  59. Abols I.A., Basbaum A.I., Afferent connections of the rostral medulla of the cat: a neural substrate for midbrain — medullary interactions in the modulation of pain, J. Comp. Neurol., 1981, 201, 285–297

    PubMed  CAS  Google Scholar 

  60. Golanov E.V., Ruggiero D.A., Reis D.J., A brainstem area mediating cerebrovascular and EEG responses to hypoxic excitation of rostral ventrolateral medulla in rat, J. Physiol., 2000, 529, 413–429

    PubMed  CAS  Google Scholar 

  61. Lovick T.A., Midbrain influences on ventrolateralmedullo-spinal neurones in the rat, Exp. Brain Res., 1992, 90, 147–152

    PubMed  CAS  Google Scholar 

  62. Lovick T.A., The periaqueductal gray -rostral medulla connection in the defense reaction-efferent pathways and descending control mechanisms, Behav. Brain Res., 1993, 58, 19–25

    PubMed  CAS  Google Scholar 

  63. Van Bockstaele E.J., Aston-Jones G., Pieribone V.A., Ennis M., Shipley M.T., Subregions of the periaqueductal gray topographically innervate the rostral ventral medulla in the rat, J. Comp. Neurol., 1991, 309, 305–327

    PubMed  Google Scholar 

  64. Chida K., Underwood M.D., Miyagawha M., Participation of the rostral ventrolateral medulla in the cerebral blood flow of rats: Effects of stimulation and lesions on systemic and cerebral circulations, Ther. Res., 1990, 11, 77–85

    Google Scholar 

  65. Chida K., Iadecola C., Reis D.J., Lesions of rostral ventrolateral medulla abolish some cardio- and cerebrovascular components of the cerebellar fastigialpressor and depressor responses, Brain Res., 1990, 508, 93–104

    PubMed  CAS  Google Scholar 

  66. Ruggiero D.A., Anware M., Golanov E.V., Reis D.J., The pedunculopontine tegmental nucleus issues collaterals to the fastigial nucleus and rostral ventrolateral reticular nucleus in the rat, Brain Res., 1997, 760, 272–276

    PubMed  CAS  Google Scholar 

  67. Sun M.K., Reis D.J., Hypoxia-activated Ca2+currents in pacemaker neurones of rat rostral ventrolateral medulla in vitro, J. Physiol., 1994, 476, 101–116

    PubMed  CAS  Google Scholar 

  68. Golanov E.V., Christensen J., Reis D.J., Neurons of a subthalamiccerebrovasodilator area (SCA) mediate elevations in cerebral flood flow (rCBF) evoked by excitation of neurons of rostral ventrolateral medulla, Soc. Neurosci. Abstr., 1999, 25, 12

    Google Scholar 

  69. Golanov E.V., Reis D.J., Vasodilation evoked from medulla and cerebellum is coupled to bursts of cortical EEG activity in rats, Am. J. Physiol., 1995, 268, 454–467

    Google Scholar 

  70. Dormer K.J., Foreman R.D., Ohata C.A., Fastigial nucleus stimulation and excitatory spinal sympathetic activity in dog, Am. J. Physiol., 1982, 243, 25–33

    Google Scholar 

  71. Nakai M., Iadecola C., Reis D.J., Global cerebral vasodilation by stimulation of rat fastigial cerebellar nucleus, Am. J. Physiol., 1982, 243, 226–235

    Google Scholar 

  72. Baron J.C., Bousser M.G., Rey A., Guillard A., Comar D., Castaigne P., Reversal of focal “misery-perfusion syndrome” by extra-intracranial arterial bypass in hemodynamic cerebral ischemia. A case study with 15O positron emission tomography, Stroke, 1981, 12, 454–459

    PubMed  CAS  Google Scholar 

  73. Chida K., Iadecola C., Reis D.J., Global reduction in cerebral blood flow and metabolism elicited from intrinsic neurons of fastigial nucleus, Brain Res., 1989, 500, 177–192

    PubMed  CAS  Google Scholar 

  74. Mraovitch S., Iadecola C., Ruggiero D.A., Reis D.J., Widespread reductions in cerebral blood flow and metabolism elicited by electrical stimulation of the parabrachial nucleus in rat, Brain Res., 1985, 341, 283–296

    PubMed  CAS  Google Scholar 

  75. Leao A.A.P., Spreading depression of activity in the cerebral cortex, J. Neurophysiol., 1944, 4, 359–390

    Google Scholar 

  76. Golanov E.V., Reis D.J., Neuroprotective electrical stimulation of cerebellar fastigial nucleus attenuates expression of periinfarction depolarizing waves (PIDs) and inhibits cortical spreading depression, Brain Res., 1999, 818, 304–315

    PubMed  CAS  Google Scholar 

  77. Mies G., Kohno K., Hossmann K.A., Prevention of periinfarct direct current shifts with glutamate antagonist NBQX following occlusion of the middle cerebral artery in the rat, J. Cereb. Blood Flow Metab., 1994, 14, 802–807

    PubMed  CAS  Google Scholar 

  78. Ochs S., The nature of spreading depression in neural networks, Int. Rev. Neurobiol., 1962, 4, 1–69

    Google Scholar 

  79. Golanov E.V., Christensen J.D., Reis J.D., Role of potassium channels in the central neurogenic neuroprotection elicited by cerebellar stimulation in rat, Brain Res., 1999, 842, 496–500

    PubMed  CAS  Google Scholar 

  80. Shimizu K., Bari F., Busija D.W., Glibenclamide enhances cortical spreading depression-associated hyperemia in the rat, Neuroreport, 2000, 11, 2103–2106

    PubMed  CAS  Google Scholar 

  81. Lassmann H., Zimprich F., Rossler K., Vass K., Inflammation in the nervous system. Basic mechanisms and immunological concepts, Rev. Neurol., 1991, 147, 763–781

    PubMed  CAS  Google Scholar 

  82. Heneka M.T., Galea E., Gavriluyk V., Dumitrescu-Ozimek L., Daeschner J., O’Banion M.K., et al., Noradrenergic depletion potentiates betaamyloid induced cortical inflammation: Implications for Alzheimer’s disease, J. Neurosci., 2002, 22, 2434–2442

    PubMed  CAS  Google Scholar 

  83. Heneka M.T., Wiesinger H., Dumitrescu-Ozimek L., Riederer P., Feinstein D.L., Klockgether T., Neuronal and glial coexpression of argininosuccinatesynthetase and inducible nitric oxide synthase in Alzheimer disease, J. Neuropathol. Exp. Neurol., 2001, 60, 906–916

    PubMed  CAS  Google Scholar 

  84. Galea E., Golanov E.V., Feinstein D.L., Kobylarz K.A., Glickstein S.B., Reis D.J., Cerebellar stimulation reduces inducible nitric oxide synthase expression and protects brain from ischemia, Am. J. Physiol., 1998, 274, 2035–2045

    Google Scholar 

  85. Galea E., Glickstein S.B., Feinstein D.L., Golanov E.V., Reis D.J., Stimulation of cerebellar fastigial nucleus inhibits interleukin-1[beta]-induced cerebrovascular inflammation, Am. J. Physiol., 1998, 275, 2053–2063

    Google Scholar 

  86. Rothwell N.J., Luheshi G.N., Interleukin 1 in the brain: Biology, pathology and therapeutic target, Trends Neurosci., 2000, 23, 618–625

    PubMed  CAS  Google Scholar 

  87. del Zoppo G., Ginis I., Hallenbeck J.M., Iadecola C., Wang X., Feuerstein G.Z., Inflammation and stroke: Putative role for cytokines, adhesion molecules and iNOS in brain response to ischemia, Brain Pathol., 2000, 10, 95–112

    PubMed  Google Scholar 

  88. Forster C., Clark H.B., Ross M.E., Iadecola C., Inducible nitric oxide synthase expression in human cerebral infarcts, ActaNeuropathol., 1999, 97, 215–220

    CAS  Google Scholar 

  89. Iadecola C., Zhang F., Xu S., Casey R., Ross M.E., Inducible nitric oxide synthase gene expression in brain following cerebral ischemia, J. Cereb. Blood Flow Metab., 1999, 15, 378–384

    Google Scholar 

  90. Jander S., Kraemer M., Schroeter M., Witte O.W., Stoll G., Lymphocytic infiltration and expression of intercellular adhesion molecule-1 in photochemically induced ischemia of the rat cortex, J. Cereb. Blood Flow Metab., 1995, 15, 42–51

    PubMed  CAS  Google Scholar 

  91. Zhang R.L., Chopp M., Jiang N., Tangb W.X., Prostak J., Manning A.M., et al., Anti-intercellular adhesion molecule-1 antibody reduces ischemic cell damage after transient but not permanent middle cerebral artery occlusion in the Wistar rat, Stroke, 1995, 26, 1438–1442

    PubMed  CAS  Google Scholar 

  92. Stroemer R.P., Rothwell N.J., Cortical protection by localized striatal injection of IL-1ra following cerebral ischemia in the rat, J. Cereb. Blood Flow Metab., 1997, 17, 597–604

    PubMed  CAS  Google Scholar 

  93. Choi D.W., Ischemia-induced neuronal apoptosis, Curr. Opin. Neurobiol., 1996, 6, 667–672

    PubMed  CAS  Google Scholar 

  94. Gillardon F., Klimaschewski L., Wickert H., Krajewski S., Reed J.C., Zimmermann M., Expression pattern of candidate cell death effector proteins Bax, Bcl-2, Bcl-X, and c-Jun in sensory and motor neurons following sciatic nerve transection in the rat, Brain Res., 1996, 739, 244–250

    PubMed  CAS  Google Scholar 

  95. Guegan B., Sola C., Early and sequential recruitment of apoptotic effectors after focal permanent ischemia in mice, Brain Res., 2000, 856, 93–100

    PubMed  CAS  Google Scholar 

  96. Vaux D. L., Korsmeyer S., Cell death in development, Cell, 1999, 96, 245–254

    PubMed  CAS  Google Scholar 

  97. Earnshaw W.C., Martins L.M., Kaufmann S.H., Mammalian caspases: structure, activation, substrates, and functions during apoptosis, Annu. Rev. Biochem., 1999, 68, 383–424

    PubMed  CAS  Google Scholar 

  98. Reed J., Mechanisms of apoptosis, Am. J. Pathol., 2000, 157, 1415–1430

    PubMed  CAS  Google Scholar 

  99. Zhou P., Qian L., Glickstein S.B., Golanov E.V., Pickel V.M., Reis D.J., Electrical stimulation of cerebellar fastigial nucleus protects rat brain, in vitro, from staurosporine-induced apoptosis, J. Neurochem., 2001, 79, 328–338

    PubMed  CAS  Google Scholar 

  100. Prehn J.H., Jordán J., Ghadge G.D., Preis E., Galindo M.F., Roos R.P., et al., Ca2+ and reactive oxygen species in staurosporine-induced neuronal apoptosis, J. Neurochem., 1997, 68, 1679–1685

    PubMed  CAS  Google Scholar 

  101. Kruman I., Guo Q., Mattson M. P., Calcium and reactive oxygen species mediate staurosporine-induced mitochondrial dysfunction and apoptosis in PC12 cells, J. Neurosci. Res., 1998, 51, 293–308

    PubMed  CAS  Google Scholar 

  102. Krajewski S., Krajewska M., Ellerby L.M., Welsh K., Xie Z., Deveraux Q.L., et al. Release of caspase-9 from mitochondria during neuronal apoptosis and cerebral ischemia, Proc. Natl. Acad. Sci. USA, 1999, 96, 5752–5757

    PubMed  CAS  Google Scholar 

  103. Krohn A.J., Preis E., Prehn J.H., Staurosporine-induced apoptosis of cultured rat hippocampal neurons involves caspase-1-like proteases as upstream initiators and increased production of superoxide as a main downstream effector, J. Neurosci., 1998, 18, 8186–8197

    PubMed  CAS  Google Scholar 

  104. Velier J.J., Ellison J.A., Kikly K.K., Spera P.A., Barone F.C., Feuerstein G.Z., Caspase-8 and caspase-3 are expressed by different populations of cortical neurons undergoing delayed cell death after focal stroke in the rat, J. Neurosci., 1999, 19, 5932–5941

    PubMed  CAS  Google Scholar 

  105. Zhou P., Qian L., Zhou T., Iadecola C., Mitochondria are involved in the neurogenic neuroprotection conferred by stimulation of cerebellar fastigial nucleus, J. Neurochem., 2005, 95, 221–229

    PubMed  CAS  Google Scholar 

  106. Antonsson B., Montessuit S., Sanchez B., Martinou J.C., Bax is present as a high molecular weight oligomer/complex in the mitochondrial membrane of apoptotic cells, J. Biol. Chem., 2001, 276, 615–623

    Google Scholar 

  107. Antonsson B., Montessuit S., Lauper S., Eskes R., Martinou J.C., Bax oligomerization is required for channel-forming activity in liposomes and to trigger cytochrome c release from mitochondria, Biochem. J., 2000, 345, 271–278

    PubMed  CAS  Google Scholar 

  108. Newmeyer S.D., Ferguson-Miller D., Mitochondria: releasing power for life and unleashing the machineries of death, Cell, 2003, 112, 481–490

    PubMed  CAS  Google Scholar 

  109. Silver I.A., Erecinska M., Intracellular and extracellular changes of [Ca2+]_in hypoxia and ischemia in rat brain in vivo, J. Gen. Physiol., 1990, 95, 837–866

    PubMed  CAS  Google Scholar 

  110. Kristian T., Katsura K., Gido G., Siesjo B.K., The influence of pH on cellular calcium influx during ischemia, Brain Res., 1994, 641, 295–302

    PubMed  CAS  Google Scholar 

  111. Schinder A.F., Olson E.C., Spitzer N.C., Montal M., Mitochondrial dysfunction is a primary event in glutamate neurotoxicity, J. Neurosci., 1996, 16, 6125–6133

    PubMed  CAS  Google Scholar 

  112. Reynolds I.J., Mitochondrial membrane potential and the permeability transition in excitotoxicity, Ann. NY Acad. Sci., 1999, 893, 33–43

    PubMed  CAS  Google Scholar 

  113. Kroemer G., Reed J., Mitochondrial control of cell death, Nat. Med., 2000, 6, 513–519

    PubMed  CAS  Google Scholar 

  114. Pfeiffer D.R., Gudz T.I., Novgorodov S.A., Erdahl W.L., The peptide mastoparan is a potent facilitator of the mitochondrial permeability transition, J. Biol. Chem. 1995, 270, 4923–4932

    PubMed  CAS  Google Scholar 

  115. Nicolay K., Laterveer F.D., van Heerde W.L., Effects of amphipathic peptides, including presequences, on the functional integrity of rat liver mitochondrial membranes, J. Bioenerg. Biomembr., 1994, 26, 327–334

    PubMed  CAS  Google Scholar 

  116. Stein S.C., Levine J.M., Nagpal S., LeRoux P.D., Vasospasm as the sole cause of cerebral ischemia: how strong is the evidence?, Neurosurg. Focus, 2006, 21, 22–25

    Google Scholar 

  117. Feigin V.L., Rinkel G.J., Lawes C.M., Algra A., Bennett D.A., van Gijn J., et al., Risk factors for subarachnoid hemorrhage: an updated systematic review of epidemiological studies, Stroke, 2005, 36, 2773–2780

    PubMed  Google Scholar 

  118. Lee K.H., Lukovits T., Friedman J.A., “Triple-H” therapy for cerebral vasospasm following subarachnoid hemorrhage, Neurocrit. Care, 2006, 4, 68–76

    PubMed  Google Scholar 

  119. Prevedello D.M., Cordeiro J.G., de Morais A.L., Saucedo N.S.Jr., Chen I.B., Araújo J.C., Magnesium sulfate: role as possible attenuating factor in vasospasm morbidity, Surg. Neurol., 2006, 65, 1–20

    Google Scholar 

  120. Cecon A.D., Figueiredo E.G., Bor-Seng-Shu E., Scaff M., Teixeira M.J., Extremely delayed cerebral vasospasm after subarachnoid hemorrhage, Arq. Neuropsiquiatr., 2008, 66, 554–556

    PubMed  Google Scholar 

  121. Fisher C.M., Kistler J.P., Davis J.M., Relation of cerebral vasospasm to subarachnoid hemorrhage visualized by CT scanning, Neurosurgery, 1980, 6, 1–9

    PubMed  CAS  Google Scholar 

  122. Hijdra A., Brouwers P.J., Vermeulen M., van Gijn J., Grading the amount of blood on computed tomograms after subarachnoid hemorrhage, Stroke, 1990, 21, 1156–1161

    PubMed  CAS  Google Scholar 

  123. Claassen J., Bernardini G.L., Kreiter K., Bates J., Du Y.E., Copeland D., Effect of cisternal and ventricular blood on risk of delayed cerebral ischemia after subarachnoid hemorrhage. The Fisher Scale revisited, Stroke, 2001, 32, 2012–2020

    PubMed  CAS  Google Scholar 

  124. Dupont S.A., Wijdicks E.F., Manno E.M., Lanzino G., Brown R.D.Jr., Rabinstein A.A., Timing of computed tomography and prediction of vasospasm after aneurysmal subarachnoid hemorrhage, Neurocrit. Care, 2009, 11, 71–75

    PubMed  Google Scholar 

  125. Cameron T., Safety and efficacy of spinal cord stimulation for the treatment of chronic pain: a 20-year literature review, J. Neurosurg., 2004, 100, 254–267

    PubMed  Google Scholar 

  126. de Jongtse M.J., Haaksma J., Hautvast R.W., Hillege H.L., Meyle P.W., Staal M.J., Effects of spinal cord stimulation on myocardial ischaemia during daily life in patients with severe coronary artery disease. A prospective ambulatory electrocardiographic study, Br. Heart J., 1994, 71, 413–418

    Google Scholar 

  127. Gersbach P., Hasdemir M.G., Stevens R.D., Nachbur B., Mahler F., Discriminative microcirculatory screening of patients with refractory limb ischaemia for dorsal column stimulation, Eur. J. Vasc. Endovasc. Surg., 1997, 13, 464–471

    PubMed  CAS  Google Scholar 

  128. Hosobuchi Y., Electrical stimulation of cervical spinal cord increases cerebral blood flow in humans, Appl. Neurophysiol., 1985, 48, 327–376

    Google Scholar 

  129. Matsui T., Hosobuchi Y., The effects of cervical spinal cord stimulation (cSCS) on rCBF, Pacing Clin. Electrophysiol., 1989, 12, 830–835

    Google Scholar 

  130. Matsui T., Hosobuchi Y., The effects of the cervical spinal cord stimulation (CSCS) on experimental stroke, Pacing Clin. Electrophysiol., 1989, 12, 726–732

    PubMed  CAS  Google Scholar 

  131. Visocchi M., Argiolas L., Meglio M., Cioni B., Dal Basso P., Rollo M., Cabezas D., Spinal cord stimulation and early experimental cerebral spasm: The functional monitoring and preventing effect, Acta Neurochir. (Wien), 2001, 143, 177–185

    CAS  Google Scholar 

  132. Shinonaga M., Takanashi Y., Vasodilating effect of spinal cord stimulation for cerebral vasospasm, Acta Neurochir. Suppl., 2001, 77, 229–230

    PubMed  CAS  Google Scholar 

  133. Takanashi Y., Shinonaga M., Spinal cord stimulation for cerebral vasospasm as prophylaxis, Neurol. Med. Chir. (Tokyo), 2000, 40, 352–357

    CAS  Google Scholar 

  134. Visocchi M., Cioni B., Pentimalli L., Meglio M., Increase of cerebral blood flow and improvement of brain motor control following spinal cord stimulation in ischemic spastic hemiparesis, Stereotact. Funct. Neurosurg., 1994, 62, 103–107

    PubMed  CAS  Google Scholar 

  135. Visocchi M., Giordano A., Calcagni M., Cioni B., Di Rocco F., Meglio M., Spinal cord stimulation and cerebral blood flow in stroke: personal experience, Stereotact. Funct. Neurosurg., 2001, 76, 262–268

    PubMed  CAS  Google Scholar 

  136. Broseta J., García-March G., Sánchez-Ledesma M.J., Gonçalves J., Silva I., Barcia J.A., et al., High-cervical spinal cord electrical stimulation in brain low perfusion syndromes: Experimental basis and preliminary clinical report, Stereotact. Funct. Neurosurg., 1994, 62, 171–178

    PubMed  CAS  Google Scholar 

  137. Sagher O., Huang D.L., Mechanisms of spinal cord stimulation in ischemia, Neurosurg. Focus, 2006, 21, 2

    Google Scholar 

  138. Göksel H.M., Karadag O.O., Turaçlar U., Taş F., Oztoprak I., Nitric oxide synthase inhibition attenuates vasoactive response to spinal cord stimulation in an experimental cerebral vasospasm model, Acta Neurochir. (Wien), 2001, 143, 383–391

    Google Scholar 

  139. Linderoth B., Gunasekera L., Meyerson B.A., Effects of sympathectomy on skin and muscle microcirculation during dorsal column stimulation: animal studies, Neurosurgery, 1991, 29, 874–879

    PubMed  CAS  Google Scholar 

  140. Linderoth B., Gherardini G., Ren B., Lundeberg T., Preemptive spinal cord stimulation reduces ischemia in an animal model of vasospasm, Neurosurgery, 1995, 37, 266–272

    PubMed  CAS  Google Scholar 

  141. Treggiari M.M., Romand J.A., Martin J.B., Reverdin A., Rüfenacht D.A., de Tribolet N., Cervical sympathetic block to reverse delayed ischemic neurological deficits after aneurysmal subarachnoid hemorrhage, Stroke, 2003, 34, 961–967

    PubMed  Google Scholar 

  142. Patel S., Huang D.L., Sagher O., Evidence for a central pathway in the cerebrovascular effect of spinal stimulation, Neurosurgery, 2004, 55, 201–206

    PubMed  Google Scholar 

  143. Reis D.J., Golanov E.V., Rugier A., Sun M.K., Sympatho-excitatory neurons of the rostral ventrolateral medulla are oxygen sensors and essential elements in the tonic and reflex control of the systemic and cerebral circulations, J. Hypertens., 1994, 12, 159–180

    Google Scholar 

  144. Sun M.K., Reis D.J., Cyanide excites medullary sympathoexcitatory neurons in rats, Am. J. Physiol., 1992, 262, 182–189

    Google Scholar 

  145. Golanov E.V., Reis D.J., Synchronization of EEG activity in cerebral cortex by stimulation of nucleus tractus solitarii (NTS) in rat: Coupling to cerebral blood flow and mediation by rostral ventrolateral medulla (RVL), Soc. Neurosci. Abstr., 1995, 21, 1669

    Google Scholar 

  146. Vahedi K., Vicaut E., Mateo J., Kurtz A., Orabi M., Guichard J.P., et al., Sequential-design multicenter randomized controlled trial of early decompressive craniectomy in malignant middle cerebral artery infarction (DECIMAL Trial), Stroke, 2007, 38, 2506–2517

    PubMed  Google Scholar 

  147. The National Institute of Neurological Disorder, Tissue plasminogen activator for acute ischemic stroke, N. Engl. J Med., 1995, 333, 1581–1587

    Google Scholar 

  148. Molina C.A., Saver J.L., Extending reperfusion therapy for acute ischemic stroke: emerging pharmacological, mechanical, and imaging strategies, Stroke, 2005, 36, 2311–2320

    PubMed  Google Scholar 

  149. Reeves M.J., Arora S., Broderick J.P., Acute stroke care in the US: results from the 4 pilot prototypes of the Paul Coverdell National Acute Stroke Registry, Stroke, 2005, 36, 1232–1240

    PubMed  Google Scholar 

  150. Micieli G., Marcheselli S., Tosi P.A., Safety and efficacy of alteplase in the treatment of acute ischemic stroke, Vasc. Health Risk Manag., 2009, 5, 397–409

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mauricio Mandel.

About this article

Cite this article

Mandel, M., Fonoff, E.T., Bor-Seng-Shu, E. et al. Neurogenic neuroprotection: Future perspectives. Translat.Neurosci. 3, 399–412 (2012). https://doi.org/10.2478/s13380-012-0047-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s13380-012-0047-4

Keywords

Navigation