Skip to main content

Advertisement

Log in

Hydrogen production by steam reforming of glycerol over Ni/Ce/Cu hydroxyapatite-supported catalysts

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

Hydroxyapatite-supported Ni-Ce-Cu catalysts were synthesised and tested to study their potential for use in the steam reforming of glycerol to produce hydrogen. The catalysts were prepared by the deposition-precipitation method with variable nickel, cerium, and copper loadings. The performance of the catalysts was evaluated in terms of hydrogen yield at 600°C in a tubular fixed-bed microreactor. All catalysts were characterised by the BET surface area, XRD, TPR, TEM, and FE-SEM techniques. The reaction time was 240 min in a fixed-bed reactor at 600°C and atmospheric pressure with a water-to-glycerol feed molar ratio of 8: 1. It was found that the Ni-Ce-Cu (3 mass %-7.5 mass %-7.5 mass %) hydroxyapatite-supported catalyst afforded the highest hydrogen yield (57.5 %), with a glycerol conversion rate of 97.3 %. The results indicate that Ni/Ce/Cu/hydroxyapatite has great potential as a catalyst for hydrogen production by steam reforming of glycerol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Adikhari, S., Fernando, S. D., & Haryanto, A. (2008). Hydrogen production from glycerin by steam reforming over nickel catalysts. Renewable Energy, 33, 1097–1100. DOI: 10.1016/j.renene.2007.09.005.

    Article  Google Scholar 

  • Atir, R., Mallouk, S., Bougrin, K., Soufiaoui, M., & Laghzizil, A. (2006). Porous calcium hydroxyapatite as an efficient catalysts for synthesis of pyrazolines via 1.3-dipolar cycloaddition under solvent-free microwave irradition. Synthetic Communications, 36, 111–120. DOI: 10.1080/00397910500330619.

    Article  CAS  Google Scholar 

  • Ashok, J., Kumar, S. N., Subrahmanyam, M., & Venugopal, A. (2008). Pure H2 production by decomposition of methane over Ni supported on hydroxyapatite catalysts. Catalysis Letters, 121, 283–290. DOI 10.1007/s10562-007-9334-z.

    Article  CAS  Google Scholar 

  • Bshish, A., Yakoob, Z., Narayanan, B., Ramakrishnan, R., & Ebshish, A. (2011). Steam-reforming of ethanol for hydrogen production. Chemical Papers, 65, 251–266. DOI: 10.2478/s11696-010-0100-0.

    Article  CAS  Google Scholar 

  • Buffoni, I. N., Pompeo, F., Santori, G. F., & Nichio, N. N. (2009). Nickel catalysts applied in steam reforming of glycerol for hydrogen production. Catalysis Communications, 10, 1656–1660. DOI: 10.1016/j.catcom.2009.05.003.

    Article  CAS  Google Scholar 

  • Calderín, L., Stott, M. J., & Rubio, A. (2003). Electronic and crystallographic structure of apatites. Physical Review B, 67, 134106. DOI: 10.1103/PhysRevB.67.134106.

    Article  Google Scholar 

  • Chen, W., Huang, Z. L., Liu, Y., & He, Q. J. (2008). Preparation and characterization of a novel solid base catalyst hydroxyapatite loaded with strontium. Catalysis Communications, 9, 516–521. DOI: 10.1016/j.catcom.2007.02.011

    Article  CAS  Google Scholar 

  • Choudary, B. M., Sridhar, C., Kantam, M. L., & Sreedhar, B. (2004). Hydroxyapatite supported copper catalyst for effective three-component coupling. Tetrahedron Letters, 45, 7319–7321. DOI: 10.1016/j.tetlet.2004.08.004.

    Article  CAS  Google Scholar 

  • Dan, M., Mihet, M., Biris, A. R., Marginean, P., Almasan, V., Borodi, G., Watanabe, F., Biris, A. S., & Lazar, M. D. (2012). Supported nickel catalysts for low temperature methane steam reforming: comparison between metal additives and support modification. Reaction Kinetics, Mechanisms and Catalysis, 105, 173–193. DOI 10.1007/s11144-011-0406-0.

    Article  CAS  Google Scholar 

  • Djinović, P., Batista, J., Levec, J., & Pintar, A. (2009). Comparison of water-gas shift reaction activity and long-term stability of nanostructured CuO-CeO2 catalysts prepared by hard template and co-precipitation methods. Applied Catalysis A: General, 364, 156–165. DOI: 10.1016/j.apcata.2009.05.044.

    Article  Google Scholar 

  • European Commission (2003). Hydrogen energy and fuel cells: A vision of our future. Brussels, Belgium: European Commission. (EUR 20719 EN)

    Google Scholar 

  • Iriondo, A., Bario, V. L., Cambra, J. F., Arias, P. L., Güemez, M. B., Navarro, R. M., Sánchez-Sánchez, M. C., & Fierro, J. L. G. (2008). Hydrogen production from glycerol over nickel catalysts supported on Al2O3 modified by Mg, Zr, Ce or La. Topics in Catalysis, 49, 46–58. DOI: 10.1007/s11244-008-9060-9.

    Article  CAS  Google Scholar 

  • Iriondo, A., Bario, V. L., Cambra, J. F., Arias, P. L., Güemez, M. B., Navarro, R. M., Sánchez-Sánchez, M. C., & Fierro, J. L. G. (2009). Influence of La2O3 modified support and Ni and Pt active phase on glycerol steam reforming to produce hydrogen. Catalysis Communications, 10, 1275–1278. DOI: 10.1016/j.catcom.2009.02.004.

    Article  CAS  Google Scholar 

  • Jun, J. H., Lee, T. J., Lim, T. H., Nam, S. W., Hong, S. A., & Yoon, K. J. (2004). Nickel-calcium phosphate/hydroxyapatite catalysts for partial oxidation of methane to syngas: char acterization and activation. Journal of Catalysis, 221, 178–190. DOI: 10.1016/j.jcat.2003.07.004.

    Article  CAS  Google Scholar 

  • Kaneda, K., Mori, K., Hara, T., Mizugaki, T., & Ebitani, K. (2004). Design of hydroxyapatite-bound transition metal catalysts for environmentally-benign organic syntheses. Catalysis Surveys from Asia, 8, 231–239. DOI: 10.1007/s10563-004-9114-3.

    Article  CAS  Google Scholar 

  • Kim, K. H., Lee, S. Y., Nam, S. W., Lim, T. H., Hong, S. A., & Yoon, K. J. (2006). Promotion effects of ceria in partial oxidation of methane over Ni-calcium hydroxyapatite. Korean Journal of Chemical Engineering, 23, 17–20. DOI: 10.1007/bf02705686.

    Article  CAS  Google Scholar 

  • Liu, Q. H., Liu, Z. L., Zhou, X. H., Li, C. J., & Ding, J. (2011). Hydrogen production by steam reforming of ethanol over copper doped Ni/CeO2 cstalysts. Journal of Rare Earths, 29, 872–877. DOI: 10.1016/s1002-0721(10)60558-3.

    Article  CAS  Google Scholar 

  • Lukman, H., Yaakob, Z., Manal, I., Daud, W. R. W., & Majlan, E. D. (2011). Effect of nickel composition and preparation method for production of hydrogen via glycerol steam reforming. Key Engineering Material, 471-472, 1046–1051. DOI: 10.4028/www.scientific.net/KEM.471-472.1046.

    Article  Google Scholar 

  • Profeti, L. P. R., Ticianelli, E. A., & Assaf, E. M. (2009). Production of hydrogen via steam reforming of biofuels on Ni/CeO2-Al2O3 catalysts promoted by noble metals. International Journal of Hydrogen Energy, 34, 5049–5060. DOI: 10.1016/j.ijhydene.2009.03.050.

    Article  CAS  Google Scholar 

  • Sánchez, E. A., D’Angelo, M. A., & Comelli, R. A. (2010). Hydrogen production from glycerol on Ni/Al2O3 catalyst. International Journal of Hydrogen Energy, 35, 5902–5907. DOI: 10.1016/j.ijhydene.2009.12.115.

    Article  Google Scholar 

  • Shan, W. J., Feng, Z. C., Li, Z. L., Zhang, J., Shen, W. J., & Li, C. (2004). Oxidative steam reforming of methanol on Ce0.9Cu0.1OY catalysts prepared by deposition-precipitation, coprecipitation, and complexation-combustion methods. Journal of Catalysis, 228, 206–217. DOI: 10.1016/j.jcat.2004.07.010.

    Article  CAS  Google Scholar 

  • Shi, Q. J., Liu, C. W., & Chen, W. Q. (2009). Hydrogen production from steam reforming of ethanol over Ni/MgO-CeO2 catalysts at low temperature. Journal of Rare Earths, 27, 948–954. DOI: 10.1016/s1002-0721(08)60368-3.

    Article  Google Scholar 

  • Simón, E., Rosas, J. M., Santos, A., & Romero, A. (2012). Study of the deactivation of copper-based catalysts for dehydrogenation of cyclohexanol to cyclohexanone. Catalysis Today, 187, 150–158. DOI: 10.1016/j.cattod.2011.10.010.

    Article  Google Scholar 

  • Srinivasan, M., Ferraris, C., & White, T. (2006). Cadmium and lead ion capture with three dimensionally ordered macroporous hydroxyapatite. Environmental Science & Technology, 40, 7054–7059. DOI: 10.1021/es060972s.

    Article  CAS  Google Scholar 

  • Srisiriwat, N., Therdthianwong, S., & Therdthianwong, A. (2009). Oxidative steam reforming of ethanol over Ni/Al2O3 catalysts promoted by CeO2, ZrO2 and CeO2-ZrO2. International Journal of Hydrogen Energy, 34, 2224–2234. DOI: 10.1016/j.ijhydene.2008.12.058.

    Article  CAS  Google Scholar 

  • Teixeira, S., Rodriguez, M. A., Pena, P., De Aza, A. H., De Aza, S., Ferraz, M. P., & Monteiro, F. J. (2009). Physical characterization of hydroxyapatite porous scaffolds for tissue engineering. Material Science and Engineering C, 29, 1510–1514. DOI: 10.1016/j.msec.2008.09.052.

    Article  CAS  Google Scholar 

  • Wakamura, M., Kandori, K., & Ishikawa, T. (1998). Surface composition of calcium hydroxyapatite modified with metal ions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 142, 107–116. DOI: 10.1016/s0927-7757(98)00486-5.

    Article  CAS  Google Scholar 

  • Wang, X. Q., Rodriguez, J. A., Hanson, J. C., Gamarra, D., Martínez-Arias, A., & Fernández-García, M. (2006). In situ studies of the active sites for the water gas shift reaction over Cu-CeO2 catalysts: Complex interaction between metallic copper and oxygen vacancies of ceria. The Journal of Physical Chemistry B, 110, 428–434. DOI: 10.1021/jp055467g.

    Article  CAS  Google Scholar 

  • Xia, Z. G., Liao, L. B., & Zhao, S. L. (2009). Synthesis of mesoporous hydroxyapatite using a modified hard-templating route. Materials Research Bulletin, 44, 1626–1229. DOI: 10.1016/j.materresbull.2009.04.014

    Article  CAS  Google Scholar 

  • Yacobucci, B. D., & Curtright, A. E. (2004). A hydrogen economy and fuel cells: An overview. Retrieved April 4, 2012, from http://www.policyarchive.org/handle/10207/bitstreams/1915.pdf

    Google Scholar 

  • Ye, J. L., Wang, Y. Q., Liu, Y., & Wang, H. (2008). Steam reforming of ethanol over Ni/CexTi1−x O2 catalysts. International Journal of Hydrogen Energy, 33, 6602–6611. DOI: 10.1016/j.ijhydene.2008.08.036.

    Article  CAS  Google Scholar 

  • Zhang, B. C., Tang, X. L., Li, Y., Xu, Y. D., & Shen, W. J. (2007). Hydrogen production from steam reforming of ethanol and gycerol over ceria-supported metal catalysts. International Journal of Hydrogen Energy, 32, 2367–2373. DOI: 10.1016/j.ijhydene.2006.11.003

    Article  CAS  Google Scholar 

  • Zhang, Y., Li, Z., Sun, W., & Xia, C. G. (2008). A magnetically recyclable heterogeneous catalyst: Cobalt nano-oxide supported on hydroxyapatite-encapsulated γ-Fe2O3 nanocrystallites for highly efficient olefin oxidation with H2O2. Catalysis Communications, 10, 237–242. DOI: 10.1016/j.catcom.2008.08.030.

    Article  CAS  Google Scholar 

  • Zhang, L. F., Liu, J., Li, W., Guo, C. L., & Zhang, J. (2009). Ethanol steam reforming over Ni-Cu/Al2O3-MyOz (M = Si, La, Mg, and Zn) catalysts. Journal of Natural Gas Chemistry, 18, 55–65. DOI: 10.1016/s1003-9953(08)60078-x.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lukman Hakim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hakim, L., Yaakob, Z., Ismail, M. et al. Hydrogen production by steam reforming of glycerol over Ni/Ce/Cu hydroxyapatite-supported catalysts. Chem. Pap. 67, 703–712 (2013). https://doi.org/10.2478/s11696-013-0368-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11696-013-0368-y

Keywords

Navigation