Skip to main content

Advertisement

Log in

Modification and characterization of montmorillonite fillers used in composites with vulcanized natural rubber

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

Parent Ca-montmorillonite (Jelšový Potok, Slovakia, Ca-JP) and Na-montmorillonite Kunipia-F (Japan, Na-KU) were ion-exchanged with octadecyltrimethylammonium (ODTMA) cations. Characteristics of the samples were studied by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (IR) and thermogravimetry (TG). Surface areas were measured by sorption of N2 and ethyleneglycol monoethyl ether. Scanning electron microscopy photographs (SEM) were used to characterize the texture of samples. The XRD patterns show that, upon intercalation, the basal spacing of montmorillonite is expanded and corresponds to the pseudotrimolecular arrangement of organic cations in the interlayers. The IR spectra of organically modified montmorillonite show C-H stretching and bending bands of both CH3 and CH2 groups in the 3000–2800 cm−1 and 1500–1400 cm−1 region, respectively. Modification of montmorillonite by organic cations decreased the hydrophilicity of their mineral surface and adsorbed water evaporated at lower temperatures. The SEM photographs reveal a tendency towards lump formation and agglomeration of the ODTMA-montmorillonite particles. The modification introducing organic moiety lead to a substantial decrease in the surface area of both montmorillonites; however, it remained remarkably high, being at the level typical for silica. Completely characterized fillers were used to prepare rubber compositions with enhanced physical properties, as described in Hrachová et al. (2008).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Alexandre, M., & Dubois, P. (2000). Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials. Materials Science & Engineering, R28, 1–63. DOI: 10.1016/S0927-796X(00)00012-7.

    Article  CAS  Google Scholar 

  • Arroyo, M., López-Manchado, M. A., & Herrero, B. (2003). Organo-montmorillonite as substitute of carbon black in natural rubber compounds. Polymer, 44, 2447–2453. DOI: 10.1016/S0032-3861(03)00090-9.

    Article  CAS  Google Scholar 

  • Bokobza, L., & Chauvin, J.-P. (2005). Reinforcement of natural rubber: use of in situ generated silicas and nanofibres of sepiolite. Polymer, 46, 4144–4151. DOI: 10.1016/j.polymer.2005.02.048.

    Article  CAS  Google Scholar 

  • Farmer, V. C. (1974). The layer silicates. In V. C. Farmer (Ed.), Infrared spectra of minerals (pp. 331–363). London: Mineralogical Society.

    Google Scholar 

  • Farmer, V. C. (2000). Tranverse and longitudinal crystal modes associated with OH stretching vibrations in single crystals of kaolinite and dickite. Spectrochimica Acta Part A, 56, 927–930. DOI: 10.1016/S1386-1425(99)00182-1.

    Article  CAS  Google Scholar 

  • Gillman, G. P. (1979). Proposed method for the measurement of exchange properties of highly weathered soils. Australian Journal of Soil Research, 17, 129–139. DOI: 10.1071/SR9790129.

    Article  CAS  Google Scholar 

  • Gilman, J. W. (1999). Flammability and thermal stability studies of polymer layered-silicate (clay) nanocomposites. Applied Clay Science, 15, 31–49. DOI: 10.1016/S0169-1317(99)000198.

    Article  CAS  Google Scholar 

  • Hlavatý, V., & Fajnor, V. Š. (2002). Thermal stability of clay/organic intercalation complexes. Journal of Thermal Analysis & Calorimetry, 67, 113–118. DOI: 10.1023/A:1013789931016.

    Article  Google Scholar 

  • Hrachová, J., Komadel, P., & Chodák, I. (2008). Effect of montmorillonite modification on mechanical properties of vulcanized natural rubber composites. Journal of Materials Science, 43, 2012–2017. DOI: 10.1007/s10853-007-2438-4.

    Article  CAS  Google Scholar 

  • Kader, M. A., Kim, K., Lee, Y.-S., & Nah, C. (2006). Preparation and properties of nitrile rubber/montmorillonite nanocomposites via latex blending. Journal of Materials Science, 41, 7341–7352. DOI: 10.1007/s10853-006-0792-2.

    Article  CAS  Google Scholar 

  • Leblanc, J. L. (2002). Ruber-filler interactions and rheological properties in filled compounds. Progress in Polymer Science, 27, 627–687. DOI: 10.1016/S0079-6700(01)00040-5.

    Article  CAS  Google Scholar 

  • Lee, Y.-S., & Kim, S. J. (2002). Expansion characteristics of organoclay as a precursor to nanocomposites. Colloids and Surfaces A: Physicochemical & Engineering Aspects, 211, 19–26. DOI: 10.1016/S0927-7757(02)00215-7.

    Article  CAS  Google Scholar 

  • MacEwan, D. M. C., & Wilson, M. J. (1980). Interlayer and intercalation complexes of clay minerals. In G. W. Brindlay, & G. Brown (Eds.), Crystal structures of clay minerals and their X-ray identification (pp. 197–248). London: Mineralogical Society.

    Google Scholar 

  • Madejová, J. (2003). FTIR techniques in clay mineral studies. Vibrational Spectroscopy, 31, 1–10. DOI: 10.1016/S0924-2031(02)00065-6.

    Article  Google Scholar 

  • Madejová, J., Kečkéš, J., Pálková, H., & Komadel, P. (2002). Identification of components in smectite/kaolinite mixture. Clay Minerals, 37, 377–388. DOI: 10.1180/0009855023720042.

    Article  CAS  Google Scholar 

  • Mandalia, T., & Bergaya, F. (2006). Organo clay mineral-melted polyolefin nanocomposites. Effect of surfactant/CEC ratio. Journal of Physics & Chemistry of Solids, 67, 836–845. DOI: 10.1016/j.jpcs.2005.12.007.

    Article  CAS  Google Scholar 

  • Mermut, A. R., & Lagaly, G. (2001). Baseline studies of The Clay Minerals Society Source Clays: Layer-charge determination and characteristics of those minerals containing 2:1 layers. Clays & Clay Minerals, 49, 393–397.

    Article  CAS  Google Scholar 

  • Novák, I., & Číčel, B. (1972). Refinement of surface area determining of clays by ethylene glycol monoethyl ether (EGME) retention. In J. Konta (Ed.), Proceedings of the Fifth Conference on Clay Mineralogy and Petrology (pp. 123–129). Prague: Charles University.

    Google Scholar 

  • Ray, S. S., & Okamoto, M. (2003). Polymer/layered silicate nanocomposites: a review from preparation to processing. Progress in Polymer Science, 28, 1539–1641. DOI: 10.1016/j.progpolymsci.2003.08.002.

    Article  CAS  Google Scholar 

  • Ray, S. S., & Bousmina, M. (2005). Biodegradable polymers and their layered silicate nanocomposites: In greening the 21st century materials world. Progress in Materials Science, 50, 962–1079. DOI: 10.1016/j.pmatsci.2005.05.002.

    Article  CAS  Google Scholar 

  • Šamajová, E., Kraus, I., & Lajčáková, A. (1992). Diagenetic alteration of miocene acidic vitric tuffs of the Jastraba formation (Kremnické vrchy MTS., Western Carpathians). Geologica Carpathica. Clays, 1, 21–26.

    Google Scholar 

  • Teh, P. L., Mohd Ishak, Z. A., Hashim, A. S., Karger-Kocsis, J., & Ishiaku, U. S. (2004). Effects of epoxidized natural rubber as a compatibilizer in melt compounded natural rubberorganoclay nanocomposites. European Polymer Journal, 40, 2513–2521. DOI: 10.1016/j.eurpolymj.2004.06.025.

    Article  CAS  Google Scholar 

  • Tjong, S. C. (2006). Structural and mechanical properties of polymer nanocomposites. Materials Science & Engineering, R53, 73–197. DOI: 10.1016/j.mser.2006.06.001.

    CAS  Google Scholar 

  • Valadares, L. F., Leite, C. A. P., & Galembeck, F. (2006). Preparation of natural rubber-montmorillonite nanocomposite in aqueous medium: evidence for polymer-platelet adhesion. Polymer, 47, 672–678. DOI: 10.1016/j.polymer.2005.11.062.

    Article  CAS  Google Scholar 

  • Varghese, S., Karger-Kocsis, J., & Gatos, K. G. (2003). Melt compounded epoxidized natural rubber/layered silicate nanocomposites: structure-properties relationships. Polymer, 44, 3977–3983. DOI: 10.1016/S0032-3861(03)00358-6.

    Article  CAS  Google Scholar 

  • Yariv, S. (2004). The role of charcoal on DTA curves of organoclay complexes: an overview. Applied Clay Science, 24, 225–236. DOI: 10.1016/j.clay.2003.04.002.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jana Hrachová.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hrachová, J., Chodák, I. & Komadel, P. Modification and characterization of montmorillonite fillers used in composites with vulcanized natural rubber. Chem. Pap. 63, 55–61 (2009). https://doi.org/10.2478/s11696-008-0079-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11696-008-0079-y

Keywords

Navigation