Skip to main content
Log in

Bed load transport by bed form migration

  • Research Article
  • Published:
Acta Geophysica Aims and scope Submit manuscript

Abstract

A theoretically-based methodology is presented for the determination of bed load transport from high-resolution measurements of bed surface elevations for steady-state or developing dunes. The methodology is based on the general form of the Exner equation for sediment continuity and requires information on the distribution of sediment volume concentration as well as the migration velocity of bed layers. In order to determine layer speeds, a new method based on cross-correlation analysis of elevation slices is proposed. The methodology is tested using artificially-created data as well as data from a physical model and from a flume study of developing bed forms. The analyses show the applicability of the method to determine bed load transport without the need to introduce assumptions about the form of the migrating surface. It is shown that predicted transport rates match measured or theoretical transport rates for steadily moving bed forms of an arbitrary shape. The method can also be used to predict transport rates over deforming bed forms, with the reasons for potential deviations between predicted and measured or theoretical transport rates for deforming bed forms identified and discussed. It is further shown that a simplified bulk-surface approach, that is relatively straightforward to apply and in which it is assumed that bed-layer velocity is constant with depth, gives results that are comparable to analyses based on determined bed-layer velocity variation with depth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Aberle, J., Ka. Koll, and A. Dittrich (2008), Form induced stresses over rough gravel-beds, Acta Geophys. 56,3, 584–600, DOI: 10.2478/s11600-008-0018-x.

    Article  Google Scholar 

  • Aberle, J., M. Henning, and B. Hentschel (2009), Statistical analysis of bed form dynamics. In: Conf. Proc. 33rd IAHR Congress on Water engineering for a sustainable Environment, 9–14 August 2009, Vancouver, Canada, IAHR, (papers on CD-ROM).

  • Aberle, J., V. Nikora, M. Henning, B. Ettmer, and B. Hentschel (2010), Statistical characterization of bed roughness due to bed forms: A field study in the Elbe River at Aken, Germany, Water Resour. Res. 46, W03521, DOI: 10.1029/2008WR007406.

    Article  Google Scholar 

  • Abraham, D., R.A. Kuhnle, and A.J. Odgaard (2011), Validation of bed-load transport measurements with time-sequenced bathymetric data, J. Hydraul. Eng. ASCE 137,7, 723–728, DOI: 10.1061/(ASCE)HY.1943-7900.0000357.

    Article  Google Scholar 

  • ASCE Task Committee on Flow and Transport over Dunes (2002), Flow and transport over dunes, J. Hydraul. Eng. ASCE 128,8, 726–728, DOI: 10.1061/(ASCE)0733-9429(2002)128:8(726).

    Article  Google Scholar 

  • Best, J. (2005), The fluid dynamics of river dunes: A review and some future research directions, J. Geophys. Res. 110, F04S02, DOI: 10.1029/2004JF000218.

    Article  Google Scholar 

  • Coleman, S.E., and B.W. Melville (1994), Bed-form development, J. Hydraul. Eng. 120,4, 544–560, DOI: 10.1061/(ASCE)0733-9429(1994)120:5(544).

    Article  Google Scholar 

  • Coleman, S.E., and V.I. Nikora (2009), Exner equation: A continuum approximation of a discrete granular system, Water Resour. Res. 45, W09421, DOI: 10.1029/2008WR007604.

    Article  Google Scholar 

  • Coleman, S.E., V.I. Nikora, B.W. Melville, D.G. Goring, T.M. Clunie, and H. Friedrich (2008), SWAT.nz: New-Zealand-based “Sand waves and turbulence” experimental programme, Acta Geophys. 56,2, 417–439, DOI: 10.2478/s11600-007-0046-y.

    Article  Google Scholar 

  • Coleman, S.E., V.I. Nikora, and J. Aberle (2011), Interpretation of alluvial beds through bed-elevation distribution moments, Water Resour. Res. 47, W11505, DOI: 10.1029/2011WR010672.

    Article  Google Scholar 

  • Crickmore, M.J. (1967), Measurement of sand transport in rivers with special reference to tracer methods, Sedimentology 8,3, 175–228, DOI: 10.1111/j.1365-3091.1967.tb01321.x.

    Article  Google Scholar 

  • Crickmore, M.J. (1970), Effect of flume width on bed-form characteristics, J. Hydraul. Div. 96,2, 473–496.

    Google Scholar 

  • Dinehart, R.L. (2002), Bedform movement recorded by sequential single-beam surveys in tidal rivers, J. Hydrol. 258,1–4, 25–39, DOI: /10.1016/S0022-1694(01)00558-3.

    Article  Google Scholar 

  • Duffy, G.P., and J.E. Hughes-Clarke (2005), Application of spatial cross correlation to detection of migration of submarine sand dunes, J. Geophys. Res. 110, F04S12, DOI: 10.1029/2004JF000192.

    Article  Google Scholar 

  • Engel, P., and Y.L. Lau (1980), Computation of bed load using bathymetric data, J. Hydraul. Div. 106,3, 369–380.

    Google Scholar 

  • Engel, P., and Y.L. Lau (1981), Bed load discharge coefficient, J. Hydraul. Div. 107,11, 1445–1454.

    Google Scholar 

  • Führböter, A. (1979), Strombänke (Grossriffel) und Dünen als Stabilisierungsformen, Mitteilungen des Leichtweiß-Instituts für Wasserbau, Technische Universität Braunschweig, Braunschweig, Germany, 67, 155–191 (in German).

    Google Scholar 

  • Führböter, A. (1983), Zur Bildung von makroskopischen Ordnungsstrukturen (Strömungsriffel und Dünen) aus sehr kleinen Zufallsstörungen, Mitteilungen des Leichtweiß-Instituts für Wasserbau, Technische Universität Braunschweig, Braunschweig, Germany, 79, 1-51 (in German).

    Google Scholar 

  • Gaeuman, D., and R.B. Jacobson (2007), Field assessment of alternative bed-load transport estimators, J. Hydraul. Eng. ASCE 133,2, 1319–1328, DOI: 10.1061/(ASCE)0733-9429(2007)133:12(1319).

    Article  Google Scholar 

  • Goring, D., V. Nikora, and I. McEwan (1999), Analysis of texture of gravel beds using 2-D structure functions. In: G. Seminara and P. Blondeaux (eds.), River, Coastal, and Estuarine Morphodynamics: Proceedings of the IAHR Symposium 2, Springer, New York, 111–120.

    Google Scholar 

  • Gyr, A., and K. Hoyer (2006). Sediment Transport: A Geophysical Phenomenon, Springer, Dordrecht.

    Google Scholar 

  • Henning, M., B. Hentschel, and T. Hüsener, (2009), Photogrammetric system for measurement of dune movement. In: The Conf. Proc. 33rd IAHR Congress “Water Engineering for a Sustainable Environment”, Vancouver, Canada, August 9–14, 2009, 4966–4972 (CD-ROM).

  • Henning, M., J. Aberle, and S. Coleman (2010), Analysis of 3D-bed form migration rates. In: A. Dittrich, Ka. Koll, J. Aberle, and P. Geisenhainer, Proc. Int. Conf. on Fluvial Hydraulics River Flow 2010, Braunschweig, Germany, BAW, 879–885.

  • Hentschel, B. (2006), Physikalisches Geschiebetransportmodel der Oder zur Untersuchung der Wechselwirkung von Stromregelungsbauwerken, Sohlformen und nautischen Bedingungen, Wasserbauliche Mitteilungen Heft 32, TU Dresden, 87–94 (in German).

  • Hoekstra, P., P. Bell, P. van Santen, N. Roode, F. Levoy, and R. Whitehouse (2004), Bedform migration and bedload transport on an intertidal shoal, Cont. Shelf Res. 24,11, 1249–1269, DOI: 10.1016/j.csr.2004.03.006.

    Article  Google Scholar 

  • Holmes, R.R., Jr. (2010), Measurement of bedload transport in sand-bed rivers: A look at two indirect sampling methods, U.S. Geological Survey Scientific Investigations Report 2010-5091.

  • Hubbell, D.W. (1964), Apparatus and Techniques for Measuring Bedload, Geological Survey Water-Supply Paper 1748, U.S.: Department of the Interior.

    Google Scholar 

  • Jinchi, H., (1992), Application of sandwave measurements in calculating bed load discharge. In: Erosion and Sediment Transport Monitoring Programmes in River Basins, Proc. Oslo Symposium, Vol. 210, IAHS Publ., Wallingford, UK, 63–70.

    Google Scholar 

  • Kadota, A., and I. Nezu (1999), Three-dimensional structure of space-time correlation on coherent vortices generated behind dune crest, J. Hydraul. Res. 37,1, 59–80, DOI: 10.1080/00221689909498532.

    Article  Google Scholar 

  • Kennedy, J.F. (1969), The formation of sediment ripples, dunes, and antidunes, Ann. Rev. Fluid Mech. 1, 147–168, DOI: 10.1146/annurev.fl.01.010169.001051.

    Article  Google Scholar 

  • Knaapen, M.A.F., C.N. van Bergen Henegouw, and Y.Y. Hu (2005), Quantifying bedform migration using multi-beam sonar, Geo-Marine Lett. 25,5, 306–314, DOI: 10.1007/s00367-005-0005-z.

    Article  Google Scholar 

  • Kuhnle, R.A., J.K. Horton, S.J. Bennet, and J.L. Best (2006), Bed forms in bimodal sand-gravel sediments: laboratory and field analysis, Sedimentology 53,3, 631–654, DOI: 10.1111/j.1365-3091.2005.00765.x.

    Article  Google Scholar 

  • McElroy, B., and D. Mohrig (2009), Nature of deformation of sandy bed forms, J. Geophy. Res. 114, F00A04, DOI: 10.1029/2008JF001220.

    Article  Google Scholar 

  • Mertens, W. (1995), Zur Wahl geeigneter Sedimenttransport-Formeln, Wasserwirtschaft 85, 486–490 (in German).

    Google Scholar 

  • Mohrig, D., and J.D. Smith (1996), Predicting the migration rates of subaqueous dunes, Water Resour. Res. 32,10, 3207–3217, DOI: 10.1029/96WR01129.

    Article  Google Scholar 

  • Nikora, V.I., A. Sukhodolov, and P.M. Rowinski, (1997), Statistical sand wave dynamics in one-directional water flows, J. Fluid Mech. 351, 17–39, DOI: 10.1017/S0022112097006708.

    Article  Google Scholar 

  • Nikora, V., I. McEwan, S. McLean, S. Coleman, D. Pokrajac, and R. Walters (2007), Double-Averaging concept for rough-bed open-channel and overland flows: Theoretical Background, J. Hydraul. Eng. ASCE 133,8, 873–883, DOI: 10.1061/(ASCE)0733-9429(2007)133:8(873).

    Article  Google Scholar 

  • Nittrouer, J.A., M.A. Allison, and R. Campanella (2008), Bedform transport rates for the lowermost Mississippi River, J. Geophys. Res. 113, F03004, DOI: 10.1029/2007JF000795.

    Article  Google Scholar 

  • Nordin, C.F. (1971), Statistical Properties of Dune Profiles, Geological Survey Professional Paper 562-F, USGS, Washington, pp. 41.

    Google Scholar 

  • Raudkivi, A.J. (1997), Ripples on stream bed, J. Hydraul. Eng. 123,1, 58–64, DOI: 10.1061/(ASCE)0733-9429(1997)123:1(58).

    Article  Google Scholar 

  • Raudkivi, A., and H. Witte (1990), Development of bed features, J. Hydraul. Eng. ASCE 116,9, 1063–1079, DOI: 10.1061/(ASCE)0733-9429(1990)116:9(1063).

    Article  Google Scholar 

  • Richardson, E.V., D.B. Simons, and G.J. Posakony (1961), Sonic Depth Sounder for Laboratory and Field Use, Geological Survey Circular, US Department of the Interior, Washington, USA.

    Google Scholar 

  • Shen, H.W., and H.-F. Cheong (1977), Statistical properties of sediment bed profiles, J. Hydraul. Div. 103,HY11, 1303–1321.

    Google Scholar 

  • Simons, D.B., E.V. Richardson, and C.F. Nordin, (1965), Bedload Equation for Ripples and Dunes, Geological Survey Professional Paper 462-H, USGS, Washington.

    Google Scholar 

  • Ten Brinke, W.B.M., A.W.E. Wilbers, and C. Wesseling (1999), Dune growth, decay and migration rates during a large-magnitude flood at a sand and mixed sand-gravel bed in the Dutch Rhine river system. In: N.D. Smith and J. Rogers. (eds.), Fluvial Sedimentology VI, Blackwell Publishing Ltd., Oxford, UK, 15–32, DOI: 10.1002/9781444304213.ch2.

    Chapter  Google Scholar 

  • van den Berg, J.H. (1987), Bedform migration and bed-load transport in some rivers and tidal environments, Sedimentology 34,4, 681–698, DOI: 10.1111/j.1365-3091.1987.tb00794.x.

    Article  Google Scholar 

  • van der Mark, C.F., A. Blom, A., and S.J.M.H. Hulscher (2008), Quantification of variability in bedform geometry, J. Geophys. Res. 113, F03020, DOI: 10.1029/2007JF000940.

    Article  Google Scholar 

  • Vanoni, V.A. (2006), Sedimentation Engineering: Theory, Measurements, Modeling, and Practice, Manuals and Reports on Engineering Practice No. 54, American Society of Civil Engineers Publications, Reston, VA, 2nd ed.

    Google Scholar 

  • Venditti, J.G., M. Church, and S.J. Bennet (2005), Morphodynamics of small-scale superimposed sand waves over migrating dune bed forms, Water Resour. Res. 41, W10423, DOI: 10.1029/2004WR003461.

    Article  Google Scholar 

  • Willis, J.C., and J.F. Kennedy (1977), Sediment discharge of alluvial streams calculated from bed form statistics, IIHR Report No. 202, Iowa Institute of Hydraulic Research, Iowa City.

    Google Scholar 

  • Zanke, U. (1976), Über den Einfluß von Kornmaterial, Strömungen und Wasserständen auf die Kenngrößen von Transportkörpern in offenen Gerinnen, Mitt. des Franzius-Instituts der TU Hannover, 44 (in German).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jochen Aberle.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aberle, J., Coleman, S.E. & Nikora, V.I. Bed load transport by bed form migration. Acta Geophys. 60, 1720–1743 (2012). https://doi.org/10.2478/s11600-012-0076-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11600-012-0076-y

Key words

Navigation