Skip to main content
Log in

Measurement of radon potential from soil using a special method of sampling

  • Published:
Acta Geophysica Aims and scope Submit manuscript

Abstract

Soil radon gas and/or its exhalation rate are used as indicators for some applications, such as uranium exploration, indoor radon concentration, seismic activity, location of subsurface faults, etc., and also in the studies where the main interest is the field verification of radon transport models. This work proposes a versatile method for the soil radon sampling using a special manner of pumping. The soil gas is passed through a column of charcoal by using passive pumping. A plastic bottle filled with water is coupled to an activated charcoal column and the flow of water through an adjustable hole made at the bottom of bottle assures a controlled gas flow from the soil. The results obtained for the activity of activated charcoal are in the range of 20–40 kBq/m3, for a depth of approximately 0.8 m. The results obtained by this method were confirmed by simultaneous measurements using LUK 3C device for soil radon measurements. Possible applications for the estimation of radon soil potential are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Cosma, C., D. Ristoiu, O. Cozar, V. Znamirovschi, L. Daraban, S. Ramboiu, and I. Chereji (1996a), Studies on the occurrence of radon in selected sites of Romania, Environ. Int. 22, 61–65, DOI: 10.1016/S0160-4120(96)00090-6.

    Article  Google Scholar 

  • Cosma, C., D. Ristoiu, A. Poffijn, and G. Meesen (1996b), Radon in various environmental samples in the Herculane Spa, Cerna Valley, Romania, Environ. Int. 22, 383–388, DOI: 10.1016/S0160-4120(96)00136-5.

    Google Scholar 

  • Cosma, C., M. Moldovan, T. Dicu, and T. Kovács (2008), Radon in water from Transylvania (Romania), Radiat. Meas. 43, 8, 1423–1428, DOI: 10.1016/j.radmeas.2008.05.001.

    Article  Google Scholar 

  • Darby, S., E. Whitley, P. Silcocks, B. Thakrar, M. Green, P. Lomas, J. Miles, G. Reeves, T. Fearn, and R. Doll (1998), Risk of lung cancer associated with residential radon exposure in south-west England: a case-control study, Br. J. Cancer 78, 3, 394–408.

    Article  Google Scholar 

  • Elmaghraby, E.K., and Y.A. Lotfy (2009), Differentiation between earthquake radon anomalies and those arising from nuclear activities, Appl. Radiat. Isotopes 67, 1, 208–211, DOI: 10.1016/j.apradiso.2008.07.003.

    Article  Google Scholar 

  • Gorjánácz, Z., A. Várhegyi, T. Kovács, and J. Somlai (2006), Population dose in the vicinity of closed Hungarian uranium mine, Radiat. Prot. Dosim. 118, 4, 448–452, DOI: 10.1093/rpd/nci363.

    Article  Google Scholar 

  • Hámori, K., E. Tóth, A. Losonci, and M. Minda (2006), Some remarks on the indoor radon distribution in a country, Appl. Radiat. Isotopes 64, 8, 859–863, DOI: 10.1016/j.apradiso.2006.02.098.

    Article  Google Scholar 

  • Igarashi, G., S. Saeki, N. Takahata, K. Sumikawa, S. Tasaka, Y. Sasaki, M. Takahashi, and Y. Sano (1995), Ground-water radon anomaly before the Kobe earthquake in Japan, Science 269, 5220, 60–61, DOI: 10.1126/science.269.5220.60.

    Article  Google Scholar 

  • Killip, I.R. (2005), Radon hazard and risk in Sussex, England and the factors affecting radon levels in dwellings in chalk terrain, Radiat. Prot. Dosim. 113, 1, 99–107, DOI: 10.1093/rpd/nch436.

    Article  Google Scholar 

  • Moldovan, M., C. Cosma, I. Encian, and T. Dicu (2009), Radium-226 concentration in Romanian bottled mineral waters, J. Radioanal. Nucl. Chem. 279, 2, 487–491, DOI: 10.1007/s10967-007-7326-0.

    Article  Google Scholar 

  • Nazaroff, W.W., B.A. Moed, and R.G. Sextro (1988), Soil as a source of indoor radon: Generation, migration and entry. In: W.W. Nazaroff and A.V. Nero (eds.), Radon and its Decay Products in Indoor Air, John Wiley and Sons Inc., New York, 55–112.

    Google Scholar 

  • Neznal, M., and M. Neznal (2005), Permeability as an important parameter for radon risk classification of foundation soils, Ann. Geophys. 48, 1, 175–180.

    Google Scholar 

  • Neznal, M., M. Neznal, M. Matolín, I. Barnet, and J. Miksova (2004), The new method for assessing the radon risk of building sites, Czech. Geol. Survey, Special Papers 47.

  • NRPB (1993), National Radiation Maps of Western Europe, National Radiological Protection Board, Chilton, Didcot, Oxon.

    Google Scholar 

  • Plch, J. (1997), Manual for Operating LUK 3C Device, Jiri Plch, M. Eng. SMM, Prague.

    Google Scholar 

  • Sainz, C., A. Dinu, T. Dicu, K. Szacsvai, C. Cosma, and L.S. Quindós (2009), Comparative risk assessment of residential radon exposures in two radon-prone areas, Ştei (Romania) and Torrelodones (Spain), Sci. Total Environ. 407, 15, 4452–4460, DOI: 10.1016/j.scitotenv.2009.04.033.

    Article  Google Scholar 

  • Stranden, E., and A.K. Kolstad (1985), Radon exhalation from the ground; Method of measurements and preliminary results, Sci. Total Environ. 45, 165–171, DOI: 10.1016/0048-9697(85)90217-7.

    Article  Google Scholar 

  • Tanner, A.B. (1980), Radon migration in the ground, a supplementary review. In: T.F. Gesell and W.M. Lowder (eds.), Natural Radiation Environment III, National Techn. Inform. Service, CONF-780422, Springfield, VA, 5–56.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Constantin Cosma.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cosma, C., Papp, B., Moldovan, M. et al. Measurement of radon potential from soil using a special method of sampling. Acta Geophys. 58, 947–956 (2010). https://doi.org/10.2478/s11600-010-0039-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11600-010-0039-0

Key words

Navigation