Skip to main content
Log in

Effects of nitrogen on growth and carbohydrate formation in Porphyridium cruentum

  • Research Article
  • Published:
Central European Journal of Biology

Abstract

The microalga Porphyridium cruentum (Rhodophyta) has several industrial and pharmaceutical uses, especially for its polysaccharide production. This study aimed to investigate the influence of nitrogen levels as reflected by altered N:P ratios on the production and content of biomass and carbohydrate. N:P molar ratios were altered in batch cultures to range from 1.6 to 50 using the Redfield ratio of 1:16 as reference. Algal growth (estimated as final cell number, biomass concentration and maximum specific growth rate) was negatively affected at low N:P ratios. The optimal N:P ratio for growth was identified at 35–50, with specific growth rates of 0.19 day−1 and maximum cell concentrations of 59·108 cells L−1 and 1.2 g dry weight of biomass L−1. In addition, variation in cell size was seen. Cells with larger diameters were at higher N:P ratios and smaller cells at lower ratios. The cellular carbohydrate content increased under reduced nitrogen availability. However, because accumulation was moderate at the lowest N:P ratio, 0.4 g per g dry weight biomass compared to 0.24 at the Redfield ratio of 16:1, conditions for increased total carbohydrate formation were identified at the N:P ratios optimal for growth. Additionally, carbohydrates were largely accumulated in late exponential to stationary phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ahern T.J., Katoh S., Sada E., Arachidonic acid production by the red alga Porphyridium cruentum, Biotechnol. Bioeng., 1983, 25, 1057–1070

    Article  PubMed  CAS  Google Scholar 

  2. Oh S.H., Han J.G., Kim Y., Ha J.H., Kim S.S., Jeong M.H., et al., Lipid production in Porphyridium cruentum grown under different culture conditions, J. Biosci. Bioeng., 2009, 108, 429–434

    Article  PubMed  CAS  Google Scholar 

  3. Kathiresan S., Sarada R., Bhattacharya S., Ravishankar G.A., Culture media optimization for growth and phycoerythrin production from Porphyridium purpureum, Biotechnol. Bioeng., 2007, 96, 456–463

    Article  PubMed  CAS  Google Scholar 

  4. Arad S.M., Levy-Ontman O., Red microalgal cellwall polysaccharides: biotechnological aspects, Curr. Opin. Biotechnol., 2010, 21, 358–364

    Article  PubMed  CAS  Google Scholar 

  5. Patel A.K., Laroche C., Marcati A., Ursu A.V., Jubeau S., Marchal L., et al., Separation and fractionation of exopolysaccharides from Porphyridium cruentum, Bioresource Technol, 2012, In Press, idoi: 10.1016/j.biortech.2012.1012.1038

    Google Scholar 

  6. Heaney-Kieras J., Chapman D.J., Structural studies on the extracellular polysaccharide of the red alga, Porhyridium cruentum, Carbohyd. Res., 1976, 52, 169–177

    Article  CAS  Google Scholar 

  7. Arad S., Adda M., Cohen E., The potential production of sulfated polysaccharides from Porphyridium, Plant Soil, 1985, 89, 117–127

    Article  CAS  Google Scholar 

  8. Becker E.W., Microalgae: biotechnology and microbiology, Cambridge University Press, Cambridge, 1994

    Google Scholar 

  9. John R.P., Anisha G.S., Nampoothiri K.M., Pandey A., Micro and macroalgal biomass: a renewable source for bioethanol, Bioresour. Technol., 2011, 102, 186–193

    Article  PubMed  CAS  Google Scholar 

  10. Kroen W.K., Raynburn W.R., Influence of growth status and nutrients on extracellular polysaccharide synthesis by the soil agla Chlamydomonas mexicana (Chlorophyceae), J. Phycol., 1984, 20, 253–257

    Article  CAS  Google Scholar 

  11. Brányiková I., Marsalková B., Doucha J., Brányik T., Bisová K., Zachleder V., et al., Microalgaenovel highly efficient starch producers, Biotechnol. Bioeng., 2011, 108, 766–776

    Article  PubMed  Google Scholar 

  12. Yao C., Ai J., Cao X., Xue S., Zhang W., Enhancing starch production of a marine green microalga Tetraselmis subcordiformis through nutrient limitation, Bioresour. Technol., 2012, 118, 438–444

    Article  PubMed  CAS  Google Scholar 

  13. Kilham S.S., Kreeger D.A., Goulden C.E., Lynn S.G., Effect of nutrient limitation on biochemical constituents of Ankistrodesmus falcatus, Freshwater. Biol., 1997, 38, 591–596

    Article  CAS  Google Scholar 

  14. Lourenco S.O., Lanfer Marquez U.M., Mancini-Filho J., Barbarino E., Aidar E., Changes in biochemical profile of Tetraselmis gracilis I. Comparison of two culture media, Aquaculture, 1997, 148, 153–168

    Article  CAS  Google Scholar 

  15. Ramus J., The production of extracellular polysaccharide by unicellular red alga Porphyridium aerugineum, J. Phycol., 1972, 8, 97–111

    CAS  Google Scholar 

  16. Arad S.M., Friedman O.D., Rotem A., Effect of nitrogen on polysaccharide production in a Porphyridium sp., Appl. Environ. Microbiol., 1988, 54, 2411–2414

    PubMed  CAS  Google Scholar 

  17. Carstensen J., Henriksen P., Heiskanen A.S., Summer algal blooms in shallow estuaries: Definition, mechanisms, and link to eutrophication, Limnol. Oceanogr., 2007, 52, 370–384

    Article  CAS  Google Scholar 

  18. Adda M., Merchuk J.C., Arad S., Effect of nitrate on growth and production of cell-wall polysaccharide by the unicellular red alga Porphyridium, Biomass, 1986, 10, 131–140

    Article  CAS  Google Scholar 

  19. Levy I., Gantt E., Development of photosynthetic activity in Porphyridium purpureum (Rhodophyta) following nitrogen starvation, J. Phycol., 1990, 26, 62–68

    Article  CAS  Google Scholar 

  20. Redfield A.C., The biological control of chemical factors in the environment, Am. Sci., 1958, 46, 205–221

    CAS  Google Scholar 

  21. Klausmeier C.A., Litchman E., Daufresne T., Levin S.A., Optimal nitrogen-to-phosphorus stoichiometry of phytoplankton, Nature, 2004, 429, 171–174

    Article  PubMed  CAS  Google Scholar 

  22. MacIntyre H.L., Cullen J.J., Using cultures to investigate the physiological ecology of microalgae, In: Andersen R.A., Ed., Algal culturing techniques. Elsevier Academic Press, London, UK, 2005, 287–326

    Google Scholar 

  23. Thepenier C., Gudin C., Studies on optimal conditions for polysaccharide production by Porphyridium cruentum, World J. Microbiol. Biotechnol., 1985, 1, 257–268

    Article  CAS  Google Scholar 

  24. Vonshak A., Cohen Z., Richmond A., The feasibility of mass cultivation of Porphyridium, Biomass, 1985, 8, 13–25

    Article  CAS  Google Scholar 

  25. Andersen R.A., Ed. Algal culturing techniques. Elsevier Academic Press, London, UK, 2005

    Google Scholar 

  26. Tunzi M.G., Chu M.Y., Bain R.C., In vivo fluorescence, extracted fluorescence, and chlorophyll concentrations in algal mass measurements, Water Res., 1974, 8, 623–635

    Article  CAS  Google Scholar 

  27. Lavens P., Sorgeloos P., Manual on the production and use of life food for aquaculture, FAO Fisheries Technical Papers T361, FAO, Rome, 1996, ftp://ftp.fao.org/docrep/fao/003/w3732e/w3732e00.pdf

    Google Scholar 

  28. Herbert D., Phipps P.J., Strange R.E., Chemical analysis of microbial cells, In: Norris J.R., Ribons D.W., Eds., Methods in microbiology. Academic Press, London, 1971, 209–344

    Google Scholar 

  29. Lien T., Knutsen G., Phosphate as a control factor in cell division of Chlamydomonas reinhardti, studied in synchronous culture, Exp. Cell. Res., 1973, 78, 79–88

    Article  PubMed  CAS  Google Scholar 

  30. Roessler P.G., Environmental control of glycerolipid metabolism in microalgae: Commercial implications and future research directions, J. Phycol., 1990, 26, 393–399

    Article  CAS  Google Scholar 

  31. Young E.B., Beardall J., Photosynthetic function in Dunaliella tertiolecta (Chlorophyta) during a nitrogen starvation and recovery cycle, J. Phycol., 2003, 39, 897–905

    Article  CAS  Google Scholar 

  32. Percival E., Foyle R.A.J., Extracellular polysaccharides of Porphyridium cruentum and Porphyridium aerugineum, Carbohyd. Res., 1979, 72, 165–176

    Article  CAS  Google Scholar 

  33. Lien T., Knutsen G., Synchronous cultures of Chlamydomonas reinhardti. Synthesis of repressed and derepressed phosphatase during the life cycle, Biochim. Biophys. Acta., 1972, 287, 154–163

    Article  PubMed  CAS  Google Scholar 

  34. Arrigo K.R., Marine microorganisms and global nutrient cycles, Nature, 2005, 437, 349–355

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eva Albers.

About this article

Cite this article

Razaghi, A., Godhe, A. & Albers, E. Effects of nitrogen on growth and carbohydrate formation in Porphyridium cruentum . cent.eur.j.biol. 9, 156–162 (2014). https://doi.org/10.2478/s11535-013-0248-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11535-013-0248-z

Keywords

Navigation