, Volume 7, Issue 5, pp 825-838
Date: 03 Aug 2012

Vi antigen of Salmonella enetrica serovar Typhi — biosynthesis, regulation and its use as vaccine candidate

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access

Abstract

Vi capsular polysaccharide (Vi antigen) was first identified as the virulence antigen of Salmonella enterica serovar Typhi (S. Typhi), the causative agent of typhoid fever in humans. The presence of Vi antigen differentiates S. Typhi from other serovars of Salmonella. Vi antigen is a linear polymer consisting of α-1,4-linked-N-acetyl-galactosaminuronate, whose expression is controlled by three chromosomal loci, namely viaA, viaB and ompB. Both viaA and viaB region are present on Salmonella Pathogenicity Island-7, a large, mosaic, genetic island. The viaA region encodes a positive regulator and the viaB locus is composed of 11 genes designated tviA-tviE (for Vi biosyhthesis), vexA-vexE (for Vi antigen export) and ORF 11. Vi polysaccharide is synthesized from UDP-N-acetyl glucosamine in a series of steps requiring TviB, TviC, and TviE, and regulation of Vi polysaccharide synthesis is controlled by two regulatory systems, rscB-rscC (viaA locus) and ompR-envZ (ompB locus), which respond to changes in osmolarity. This antigen is highly immunogenic and has been used for the formulation of one of the currently available vaccines against typhoid. Despite advancement in the area of vaccinology, its pace of progress needs to be accelerated and effective control programmes will be needed for proper disease management.