, Volume 8, Issue 4, pp 852-860
Date: 18 Jul 2010

Crystal structures and spectral properties of new Cd(II) and Hg(II) complexes of monensic acid with different coordination modes of the ligand

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access

Abstract

The single crystal X-ray structures and the spectroscopic properties of complexes of monensic acid (C36H62O11·H2O) with toxic metal ions of Cd(II) and Hg(II) are discussed. The cadmium(II) complex (1) is of composition [Cd(C36H61O11)2(H2O)2] and crystallizes in the monoclinic system (space group P2(1), Z = 2) with a = 12.4090(8), b = 24.7688(16), c = 14.4358(11) Å, β = 91.979(7)°. Two ligand monoanions are bound in a bidentate coordination mode to Cd(II) via the carboxylate and the primary hydroxyl oxygens occupying the equatorial plane of the complex. The axial positions of the inner coordination sphere of Cd(II) are filled by two water molecules additionally engaged in intramolecular hydrogen bonds. The Hg(II) complex (2), [Hg(C36H60O11)(H2O)], crystallizes in the orthorhombic system (space group P2(1)2(1)2(1), Z = 4) with a = 12.7316(2), b = 16.4379(3), c = 18.7184(4) Å. The monensic acid reacts with Hg(II) in a tetradentate coordination manner via both oxygen atoms of the carboxylate function and oxygens of two hydroxyl groups. The twofold negative charge of the ligand is achieved by deprotonation of carboxylic and secondary hydroxyl groups located at the opposite ends of the molecule. Hg(II) is surrounded by five oxygen atoms in a distorted square pyramidal molecular geometry.