Skip to main content
Log in

Earthquake source parameters at the sumatran fault zone: Identification of the activated fault plane

  • Research Article
  • Published:
Central European Journal of Geosciences

Abstract

Fifteen earthquakes (Mw 4.1–6.4) occurring at ten major segments of the Sumatran Fault Zone (SFZ) were analyzed to identify their respective fault planes. The events were relocated in order to assess hypocenter uncertainty. Earthquake source parameters were determined from three-component local waveforms recorded by IRIS-DMC and GEOFON broadband lA networks. Epicentral distances of all stations were less than 10°. Moment tensor solutions of the events were calculated, along with simultaneous determination of centroid position. Joint analysis of hypocenter position, centroid position, and nodal planes produced clear outlines of the Sumatran fault planes. The preferable seismotectonic interpretation is that the events activated the SFZ at a depth of approximately 14–210 km, corresponding to the interplate Sumatran fault boundary. The identification of this seismic fault zone is significant to the investigation of seismic hazards in the region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. McCarthy A.J., Elders C.F., Cenozolc Deformation In Sumatra: Oblique Subduction and the Development of the Sumatran Fault System. In: Fraser, A.J., Matthews, S.J., Murphy, R.W. (Eds.), Petroleum Geology of Southeast Asia. Geol. Soc. Spec. Pubs, 1997, 126, 355-363

  2. Natawldjaya D.H, Neotectonlcs of the Sumatra Fault and Paleogeodesy of the Sumatra Subduction Zone, PhD thesis, California Institute of Technology Pasadena, USA, 2002

    Google Scholar 

  3. Yeats R., Sieh K., Allen C., The Geology of Earth-quakes, Oxford University Press, New York, 1997

    Google Scholar 

  4. Lasitha S., Radhakrishna M., Sanu T.D., Seismically active deformation in the Sumatra-Java Trench-arc region: Geodynamic Implications, Current Science, 2006, 90, 690–696

    Google Scholar 

  5. Prawirodirdjo L., Bock Y., McCaffrey R., and e. al., Geodetic observations of interseismic strain segmentation at the Sumatra subduction zone, Geophys. Res. Lett., 1997, 24, 2601–2604

    Article  Google Scholar 

  6. McCaffrey R., Slip vectors and stretching of the Sumatran fore arc, Geology, 1991, 19, 881–884

    Article  Google Scholar 

  7. Bellier O., Sebrier M., Is the slip rate variation on the Great Sumatran Fault accommodated by fore-arc stretching? Geophys. Res. Lett., 1995, 22, 1969–1972

    Article  Google Scholar 

  8. Natawidjaya D.H, The Sumatran Fault Zone — from Source to Hazard, Journal of Earthquake and Tsunami, 2007, 1, 21–47

    Article  Google Scholar 

  9. Haslinger F., Kissling E., Ansorge J., Hatzfeld D., Papadimitriou E., Karakostas V., Makropoulos K., Kahle H.-G., Peter, Y., 3D crustal structure from local earthquake tomography around the Gulf of Arta (Ionian region, NW Greece), Tectonophysics, 1999, 304, 201–218

    Article  Google Scholar 

  10. Santosa B.J., Analyzing the seismogram of earthquakes on Sumatra-Java Subduction plane at CHTO observation station, Journal MIPA, 2005, 13, 23–29

    Google Scholar 

  11. Klein F.W, HYPOINVERSE, a program for VAX and Pro-350 computers to solve for earthquake locations and magnitudes, U.S. Geological Survey Open-File Report, 1985, 85–515

  12. Serpetsidaki A., Sokos E., Tselentis G.A., Zahradnik J., Seismic sequence near Zakynthos Island, Greece, April 2006: identification of the activated fault plane, Tectonophysics, 2010, 480, 23–32

    Article  Google Scholar 

  13. Tselentis G.A., Melis N.S., Sokos E., Papatsimpa K., The Egion June 15, 1995 (6.2 ML) earthquake, Western Greece, Pure Appl. Geophysics., 1996, 147, 83–98

    Article  Google Scholar 

  14. Zahradnik J., Jansky J., and Plicka V., Detailed Wave form Inversion for Moment Tensors of M ≈4 Events: Examples from the Corinth Gulf, Greece, Bull. Seism. Soc. Am., 2008, 98, 2756–2771

    Article  Google Scholar 

  15. Goldstein P., Snoke A., SAC Availability for the IRIS Community, IRIS Consortium, DMS Electronic Newsletter, 2005, 7,www.iris.edu/news/newsletter/vol7no1/page1.htm

  16. Sokos E., Zahradnlk J., ISOLA a Fortran code and a Matlab GUI to perform multiple-point source inversion of seismic data, Computers & Geosciences, 2008, 34, 967–977

    Article  Google Scholar 

  17. Kikuchi M., Kanamori H., Inversion of complex body waves — III, Bull. Seism. Soc. Am., 1991, 81, 2335–2350

    Google Scholar 

  18. Bouchon M., A review of the discrete wavenumber method, Pure Appl. Geophys, 2003, 160, 445–465

    Article  Google Scholar 

  19. Coutant O., Program of numerical simulation AXI-TRA, Laboratoire de Géophysique Interne et Tectonophysique Report, University of Joseph Fourier, 1990 (in French)

  20. Zahradnik J., Serpetsidaki A., Sokos, E., Tselentis G.A., Iterative deconvolution of regional waveforms and a double-event interpretation of the Leftada earthquake, Greece, Bull. Seism. Soc. Am., 2005, 95, 159–172

    Article  Google Scholar 

  21. Zahradnik J., Sokos E., Tselentis G.-A., Martakis N., Non-double-couple mechanism of moderate earth-quakes near Zakynthos, Greece, April 2006; explanation terms of complexity, Geophys. Prospect, 2008, 56, 341–356

    Article  Google Scholar 

  22. Zahradnik J., Gallovic F., Sokos E., Serpetsidaki A. and Tselentis G.A., Quick Fault-Plane Identification by a Geometrical Method: Application to the Mw 6.2 Leonidio Earthquake, 6 January 2008, Greece. Seismological Research Letters, 2008, 79, 653–662

    Article  Google Scholar 

  23. Fitch T., Plate convergence, transcurrent faults, and internal deformation adjacent to southeast Asia and the western Pacific, Journal of Geophysical Research, 1972, 77, 4432–4462

    Article  Google Scholar 

  24. McCaffrey R., Slip vectors and stretching of the Sumatran fore arc, Geology, 1991, 19, 881–884

    Article  Google Scholar 

  25. Diament M., Harjono H., Karta K., Deplus C., Dahrin D., Zen Jr. M.T., Gerard M., Lassal O., Martin A., Malod J., Mentawai fault zone off Sumatra: a new key to the geodynamics of western Indonesia, Geology, 1992, 20, 259–262

    Article  Google Scholar 

  26. Zen Jr. M., Dahrin D., Diament M., Harjono H., Karta K., Deplus C., Gerard M., Lassal O., Malod J., Martin A., Mantawai-90 cruise result: the Sumatra oblique subduction and strike slip fault zones. In: Prasetyo H. (Ed.), Geodynamic Processes in the Forearc Sliver Plate and General Topics, Indonesian Assoc. of Geophys., Bandung, 1991, 46

    Google Scholar 

  27. Pramumijoyo S., Sebrier M., Neogene and Quaternary fault kinematics around the Sunda Strait area, Indonesia, J. Southeast Asian Earth Sci., 1991, 6, 137–145

    Article  Google Scholar 

  28. Harjono H., Diament M., Dubois J., Larue M., Seismicity of the Sunda Strait: Evidence for crustal extension and volcanological implicationa, Tectonics, 1991, 10, 17–30

    Article  Google Scholar 

  29. Kerry S., Natawidjaya D., Neotectonics of the Sumatra fault, Indonesia, Journal of Geophysical Research, 2002, 105, 298–309

    Google Scholar 

  30. Pacheco J.F., Lynn R.S., Scholz C.H., Nature of seismic coupling along simple plate boundaries of the subduction type, Journal of Geophysical Research, 1993, 98, 14133–14159

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Kasmolan, M., Santosa, B.J., Lees, J.M. et al. Earthquake source parameters at the sumatran fault zone: Identification of the activated fault plane. Cent. Eur. J. Geosci. 2, 455–474 (2010). https://doi.org/10.2478/v10085-010-0016-5

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.2478/v10085-010-0016-5

Keywords

Navigation