Skip to main content
Log in

Nonlinear time-fractional differential equations in combustion science

  • Survey Paper
  • Published:
Fractional Calculus and Applied Analysis Aims and scope Submit manuscript

Abstract

The application of Fractional Calculus in combustion science to model the evolution in time of the radius of an isolated premixed flame ball is highlighted. Literature equations for premixed flame ball radius are re-derived by a new method that strongly simplifies previous ones. These equations are nonlinear time-fractional differential equations of order 1/2 with a Gaussian underlying diffusion process. Extending the analysis to self-similar anomalous diffusion processes with similarity parameter ν/2 > 0, the evolution equations emerge to be nonlinear time-fractional differential equations of order 1−ν/2 with a non-Gaussian underlying diffusion process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Audounet, V. Giovangigli, J.-M. Roquejoffre, A threshold phenomenon in the propagation of a point source initiated flame. Physica D 121 (1998), 295–316.

    Article  MATH  MathSciNet  Google Scholar 

  2. J. Audounet, J.-M. Roquejoffre, An asymptotic fractional differential model of spherical flame. In: ESAIM: Proceedings Fractional Differential Systems: Models, Methods and Applications 5 (Eds. D. Matignon, G. Montseny), SMAI, Paris (1998), 15–27. http://www.emath.fr/proc/vol.5/

    Google Scholar 

  3. J. D. Buckmaster, G. Joulin, P. D Ronney, The structure and stability of non adiabatic flame balls. Combust. Flame 79 (1990), 381–392.

    Article  Google Scholar 

  4. J. D. Buckmaster, G. Joulin, P. D. Ronney, The structure and stability of non adiabatic flame balls: II. Effects of far field losses. Combust. Flame 84 (1991), 411–422.

    Article  Google Scholar 

  5. R. Gorenflo, S. Vessella, Abel Integral Equations. Analysis and Applications. Springer-Verlag, Berlin (1991).

    MATH  Google Scholar 

  6. R. Gorenflo, R. Rutman, On ultraslow and intermediate processes. In: Transform Methods and Special Functions, Sofia, 1994 (Eds. P. Rusev, I. Dimovski, V. Kiryakova), Science Culture Technology, Singapore (1995), 171–183.

    Google Scholar 

  7. R. Gorenflo, F. Mainardi, Fractional calculus: integral and differential equations of fractional order. In: Fractals and Fractional Calculus in Continuum Mechanics (Eds. A. Carpinteri, F. Mainardi), Springer-Verlag Wien and New York (1997), 223–276. http://arxiv.org/abs/805.3823

    Google Scholar 

  8. R. Gorenflo, F. Mainardi, Random walk models for space-fractional diffusion processes. Fract. Calc. Appl. Anal. 1 (1998), 167–191.

    MATH  MathSciNet  Google Scholar 

  9. R. Gorenflo, Y. Luchko, F. Mainardi, Wright functions as scaleinvariant solutions of the diffusion-wave equation. J. Comput. Appl. Anal. 118 (2000), 175–191.

    MATH  MathSciNet  Google Scholar 

  10. R. Gorenflo, F. Mainardi, Essentials of Fractional Calculus. Lecture Notes of Mini-Course on Fractional Calculus and Fractional Diffusion Processes by F. Mainardi and R. Gorenflo, at the Centre for Mathematical Physics and Stochastics (Ma-PhySto), University of Aarhus, Denmark, on January 24–28, 2000. http://www.maphysto.dk/oldpages/events/LevyCAC2000/MainardiNotes/fm2k0a.ps

  11. R. Gorenflo, F. Mainardi, D. Moretti, G. Pagnini, P. Paradisi, Discrete random walk models for space-time fractional diffusion. Chemical Physics 284 (2002), 521–541. http://arxiv.org/pdf/cond-mat/0702072

    Article  Google Scholar 

  12. V. Guyonne, P. Noble, On a model of flame ball with radiative transfer. SIAM J. Appl. Math. 67 (2007), 854–868.

    Article  MATH  MathSciNet  Google Scholar 

  13. G. Joulin, Point-source initiation of lean spherical flames of light reactants: An asymptotic theory. Combust. Sci. Tech. 185 (1985), 99–113.

    Article  Google Scholar 

  14. E. K. Lenzi, M. K. Lenzi, L. R. Evangelista, L. C. Malacarne, R. S. Mendes, Solutions for a fractional nonlinear diffusion equation with external force and absorbent term. J. Stat. Mech. (2009), P02048.

  15. F. Mainardi, Fractional relaxation-oscillation and fractional diffusionwave phenomena. Chaos, Solitons & Fractals 7 (1996), 1461–1477.

    Article  MATH  MathSciNet  Google Scholar 

  16. F. Mainardi, Y. Luchko, G. Pagnini, The fundamental solution of the space-time fractional diffusion equation. Fract. Calc. Appl. Anal. 4 (2001), 153–192. http://arxiv.org/abs/cond-mat/0702419

    MATH  MathSciNet  Google Scholar 

  17. F. Mainardi, A. Mura, G. Pagnini, The M-Wright function in timefractional diffusion processes: A tutorial survey. Int. J. Diff. Equations 2010 (2010), 104505.

    MathSciNet  Google Scholar 

  18. P. D. Ronney, Near-limit flame structures at low Lewis number. Combust. Flame 82 (1990), 1–14.

    Article  Google Scholar 

  19. P. D. Ronney, K. N. Whaling, A. Abbud-Madrid, J. L. Gatto, V. L. Pisowicz, Stationary premixed flames in spherical and cylindrical geometries. AIAA J. 32 (1994), 569–577.

    Article  Google Scholar 

  20. P. D. Ronney, M. S. Wu, H. G. Pearlman, K. J. Weiland, Structure Of Flame Balls At Low Lewis-number (SOFBALL): Preliminary results from STS-83 space flight experiments. AIAA J. 36 (1998), 1361–1368.

    Article  Google Scholar 

  21. H. Rouzaud, Dynamique d’un modèle intégro-différentiel de flamme sphérique avec pertes de chaleur. C. R. Acad. Sci. Paris Série I 332 (2001), 1083–1086.

    MATH  MathSciNet  Google Scholar 

  22. I. M. Sokolov, J. Klafter, A. Blumen, Fractional kinetics. Physics Today November (2002), 48–54.

  23. Ya. B. Zeldovich, Theory of Combustion and Detonation of Gases. Academy of Sciences (USSR), Moscow (1944).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gianni Pagnini.

Additional information

Dedicated to Professor R. Gorenflo on the occasion of his 80th birthday

About this article

Cite this article

Pagnini, G. Nonlinear time-fractional differential equations in combustion science. fcaa 14, 80–93 (2011). https://doi.org/10.2478/s13540-011-0006-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s13540-011-0006-8

MSC 2010

Key Words and Phrases

Navigation