Skip to main content
Log in

Reassessment of teratogenic risk from antenatal ultrasound

  • Communication
  • Published:
Translational Neuroscience

Abstract

Science has shown that risk of cavitation and hyperthermia following prenatal ultrasound exposure is relatively negligible provided intensity, frequency, duration of exposure, and total numbers of exposures are safely limited. However, noncavitational mechanisms have been poorly studied and occur within what are currently considered “safe” levels of exposure. To date, the teratogenic capacity of noncavitational effectors are largely unknown, although studies have shown that different forms of ultrasound-induced hydraulic forces and pressures can alter membrane fluidity, proliferation, and expression of inflammatory and repair markers. Loose regulations, poor end user training, and unreliable ultrasound equipment may also increase the likelihood of cavitation and hyperthermia during prenatal exposure with prolonged durations and increased intensities. The literature suggests a need for tighter regulations on the use of ultrasound and further studies into its teratogenicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Connolly C., Pond J., The possibility of harmful effects in using ultrasound for medical diagnosis, Biomed. Eng., 1967, 2, 112–115

    Google Scholar 

  2. Woo J., A short history of the development of ultrasound in obstetrics and gynecology. History of ultrasound in obstetrics and gynecology, Part 1, 2008, retrieved on 10/12/2009 from http://www.ob-ultrasound.net/history1.html

    Google Scholar 

  3. Dewhurst C.J., The safety of ultrasound, Proc. R. Soc. Med., 1971, 64, 996–997

    PubMed  CAS  Google Scholar 

  4. Dognon A., Simonot Y., 1951. Cavitation et hémolyse par ultrasons de fréquences différentes, C. R. Hebd. Séances Acad. Sci., 1951, 232, 2411–2413

    PubMed  CAS  Google Scholar 

  5. Křížek V., Kolominsky J., Tepelné účinky ultrazvuku ve tkánäch, Čas. Lék. Čes., 1951, 90, 482–486

    Google Scholar 

  6. Johns L.D., Nonthermal effects of therapeutic ultrasound: the frequency resonance hypothesis, J. Athl. Train., 2002, 37, 293–299

    PubMed  Google Scholar 

  7. Newnham J.P., Evans S.F., Michael C.A., Stanley F.J., Landau L.I., Effects of frequent ultrasound during pregnancy: a randomised controlled trial, Lancet, 1993, 342, 887–891

    Article  PubMed  CAS  Google Scholar 

  8. Tarantal A.F., Hendrickx A.G., Evaluation of the bioeffects of prenatal ultrasound exposure in the cynomolgus macaque (Macaca fascicularis): I. neonatal/infant observations, Teratology, 1989, 39, 137–147

    Article  PubMed  CAS  Google Scholar 

  9. You J.J., Alter D.A., Stukel T.A., McDonald S.D., Laupacis A., Liu Y., et al., Proliferation of prenatal ultrasonography, Can. Med. Assoc. J., 2010, 182, 143–151

    Article  Google Scholar 

  10. Holland C.K., Apfel R.E., Thresholds for transient cavitation produced by pulsed ultrasound in a controlled nuclei environment, J. Acoust. Soc. Am., 1990, 88, 2059–2069

    Article  PubMed  CAS  Google Scholar 

  11. Frizzell L.A., Biological effects of acoustic cavitation, In: Suslick K.S. (Ed.), Ultrasound: its chemical, physical and biological effects, VCH, New York, 1988, 287–303

    Google Scholar 

  12. Kremkau F.W., Bioeffects and safety, In: Diagnostic ultrasound: principles, instrumentation and exercises, 2nd ed., Grune and Straton, New York, 1984, 166–277

    Google Scholar 

  13. Nyborg W.L., Carson P.L., Miller D.L., Miller M.W., Ziskin M.C., Carstensen E.L., et al., Biological effects of ultrasound: mechanisms and clinical Implications, National Council on Radiation Protection and Measurement, Bethesda, 1983

    Google Scholar 

  14. National Institutes of Health Consensus Committee, Diagnostic ultrasound imaging in pregnancy, 1984, NIH Pub. No. 84-667

    Google Scholar 

  15. Ziskin M.S., Petitti D.B., Epidemiology of human exposure to ultrasound: a critical review, Ultrasound Med. Biol., 1988, 14, 91–96

    Article  PubMed  CAS  Google Scholar 

  16. Grether J.K., Li S.X., Yoshida C.K., Croen L.A., Antenatal ultrasound and risk of autism spectrum disorders, J. Autism Dev. Disord., 2010, 40, 238–245

    Article  PubMed  Google Scholar 

  17. Tezel A., Sens A., Mitragotri S., Investigations of the role of cavitation in low-frequency sonophoresis using acoustic spectroscopy, J. Pharm. Sci., 2002, 91, 444–453

    Article  PubMed  CAS  Google Scholar 

  18. Counce S.J., Selman G.G., The effects of ultrasonic treatment on embryonic development of Drosophila melanogaster, J. Embryol. Exp. Morphol., 1955, 3, 121–141

    Google Scholar 

  19. Suslick K.S., The chemical effects of ultrasound., Sci. Am., 1989, 260, 80–86

    Article  CAS  Google Scholar 

  20. Basile A., Biziato D., Sherbet G.V., Comi P., Cajone F., Hyperthermia inhibits cell proliferation and induces apoptosis: relative signaling status of P53, S100A4, and Notch in heat sensitive and resistant cell lines, J. Cell. Biochem., 2008, 103, 212–220

    Article  PubMed  CAS  Google Scholar 

  21. Kampinga H.H., Thermotolerance in mammalian cells: protein denaturation and a aggregation, and stress proteins, J. Cell Sci., 1993, 104, 11–17

    PubMed  CAS  Google Scholar 

  22. Yatvin M.B., The influence of membrane lipid composition and procaine on hyperthermic death of cells, Int. J. Radiat. Biol. Relat. Stud. Phys. Chem. Med., 1977, 32, 513–521

    Article  PubMed  CAS  Google Scholar 

  23. Riesz P., Kondo T., Free radical formation induced by ultrasound and its biological implications, Free Radic. Biol. Med., 1992, 13, 247–270

    Article  PubMed  CAS  Google Scholar 

  24. Davies K.J., Protein damage and degradation by oxygen radicals, I. General aspects, J. Biol. Chem., 1987, 262, 9895–9901

    PubMed  CAS  Google Scholar 

  25. Quinlan G.J., Gutteridge J.M., Hydroxyl radical generation by the tetracycline antibiotics with free radical damage to DNA, lipids and carbohydrate in the presence of iron and copper salts, Free Radic. Biol. Med., 1988, 5, 341–348

    Article  PubMed  CAS  Google Scholar 

  26. Stadtman E.R., Levine R.L., Free radical-mediated oxidation of free amino acids and amino acid residues in proteins, Amino Acids, 2003, 25, 207–218

    Article  PubMed  CAS  Google Scholar 

  27. Macintosh I.J., Davey D.A., Relationship between intensity of ultrasound and induction of chromosome aberrations, Br. J. Radiol., 1972, 45, 320–327

    Article  PubMed  CAS  Google Scholar 

  28. Newcomer E.H., Wallace R.H., Chromosomal and nuclear aberrations induced by ultrasonic vibrations, Am. J. Bot., 1949, 36, 230–236

    Article  PubMed  CAS  Google Scholar 

  29. Krasovitski B., Kimmel E., Shear stress induced by a gas bubble pulsating in an ultrasonic field near a wall, IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 2004, 51, 973–979

    Article  PubMed  Google Scholar 

  30. Koshiyama K., Yano T., Kodama T., Self-organization of a stable pore structure in a phospholipid bilayer, Phys. Rev. Lett., 2010, 105, 018105

    Article  PubMed  Google Scholar 

  31. Deng C.X., Sieling F., Pan H., Cui J., Ultrasound-induced cell membrane porosity, Ultrasound Med. Biol., 2004, 30, 519–526

    Article  PubMed  Google Scholar 

  32. Carafoli E., Calcium signaling: a tale for all seasons, Proc. Natl. Acad. Sci. USA, 2002, 99, 1115–1122

    Article  PubMed  CAS  Google Scholar 

  33. Zhou Y., Shi J., Cui J., Deng C.X., Effects of extracellular calcium on cell membrane resealing in sonoporation, J. Control. Release, 2008, 126, 34–43

    Article  PubMed  CAS  Google Scholar 

  34. Reddy A., Caler E.V., Andrews N.W., Plasma membrane repair is mediated by Ca2+-regulated exocytosis of lysosomes, Cell, 2001, 106, 157–169

    Article  PubMed  CAS  Google Scholar 

  35. Yang F., Gu N., Chen D., Xi X., Zhang D., Li Y., et al., Experimental study on cell self-sealing during sonoporation, J. Control. Release, 2008, 131, 205–210

    Article  PubMed  CAS  Google Scholar 

  36. Al-Karmi A.M., Dinno M.A., Stolz D.A., Crum L.A., Matthews J.C., Calcium and the effects of ultrasound on frog skin, Ultrasound Med. Biol., 1994, 20, 73–81

    Article  PubMed  CAS  Google Scholar 

  37. Mihran R.T., Barnes F.S., Wachtel H., Temporally-specific modification of myelinated axon excitability in vitro following a single ultrasound pulse, Ultrasound Med. Biol., 1990, 16, 297–309

    Article  PubMed  CAS  Google Scholar 

  38. Tufail Y., Yoshihiro A., Pati S., Li M.M., Tyler W.J., Ultrasonic neuromodulation by brain stimulation with transcranial ultrasound, Nat. Protoc., 2011, 6, 1453–1470

    Article  PubMed  CAS  Google Scholar 

  39. Pébay A., Peshavariya H., Wong R.C.B., Dusting G.J., Non-classical signalling mechanisms in stem cells, In: Atwood C.S. (Ed.), Embryonic stem cells: the hormonal regulation of pluripotency and embryogenesis, Intech, ijeka, 2011, 317–336

    Google Scholar 

  40. American Institute of Ultrasound in Medicine, AIUM practice guideline for the performance of obstetric ultrasound examinations, J. Ultrasound Med., 2010, 29, 157–166

    Google Scholar 

  41. Sheiner E., Shoham-Vardi I., Abramowicz J.S., What do clinical end users know regarding safety of ultrasound during pregnancy?, J. Ultrasound Med., 2007, 26, 319–325

    PubMed  Google Scholar 

  42. Washington State Health Care Authority, Ultrasonography (ultrasound) in pregnancy: health technology assessment, 2010, taken on 08/28/2012 from http://www.hta.hca.wa.gov/documents/final_report_ultrasound.pdf

    Google Scholar 

  43. Alberta Clinical Practice Guidelines Working Group for Prenatal Ultrasound, Guideline for the use of prenatal ultrasound: First trimester, Alberta Medical Association, Edmonton, 1998

  44. Mårtensson M., Olsson M., Brodin, L.-Å. Ultrasound transducer function: annual testing is not sufficient, Eur. J. Echocardiogr., 2010, 11, 801–805

    Article  PubMed  Google Scholar 

  45. Mårtensson M., Olsson M., Segall B., Fraser A.G., Winter R., Brodin L.-Å. High incidence of defective ultrasound transducers in use in routine clinical practice, Eur. J. Echocardiogr., 2009, 10, 389–394

    Article  PubMed  Google Scholar 

  46. Rados C., FDA cautions against ultrasound’ keepsake’ images, FDA Consum., 2004, 38, 12–16

    PubMed  Google Scholar 

  47. Williams E.L., Casanova M.F., Prenatal ultrasound: it’s not just a photograph, Autism Sci. Dig., 2011, 1, 58–60

    Google Scholar 

  48. Abbott J.G., Rationale and derivation of MI and TI — a review, Ultrasound Med. Biol., 1999, 25, 431–441

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuel F. Casanova.

About this article

Cite this article

Williams, E.L., Casanova, M.F. Reassessment of teratogenic risk from antenatal ultrasound. Translat.Neurosci. 4, 81–87 (2013). https://doi.org/10.2478/s13380-013-0112-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s13380-013-0112-7

Keywords

Navigation