Skip to main content
Log in

Laser induced forward transfer of conducting polymers

  • Invited Paper
  • Published:
Opto-Electronics Review

An Erratum to this article was published on 31 December 2010

Abstract

We report on laser printing of conducting polymers directly from the solid phase. Laser induced forward transfer is employed to deposit P3HT:PCBM films on glass/ITO/PEDOT:PSS substrates. P3HT:PCBM is widely used as the active material in organic solar cells. Polyaniline films, which are also printed by laser induced forward transfer, find many applications in the field of biotechnology. Laser printing parameters are optimized and results are presented. To apply solid-phase laser printing, P3HT:PCBM films are spun cast on quartz substrates, while aniline is in-situ polymerized on quartz substrates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. U. Lange, N.V. Roznyatovskaya, and V.M. Mirsky, “Conducting polymers in chemical sensors and arrays”, Anal. Chim. Acta 614, 1–26 (2008).

    Article  Google Scholar 

  2. J.C. Vidal, E. Garcia-Ruiz, and J.R. Castillo, “Recent advances in electropolymerized conducting polymers in amperometric biosensors”, Microchim. Acta 143, 93–111 (2003).

    Article  Google Scholar 

  3. S.R. Forrest and M.E. Thompson, “Introduction: Organic electronics and optoelectronics”, Chem. Rev. 107, 923–925 (2007).

    Article  Google Scholar 

  4. B.C. Thomson and J.M.J. Frechet, “Polymer-fullerene composite solar cells”, Angew. Chem. Int. Edit. 47, 58–77 (2008).

    Article  Google Scholar 

  5. F. Li, M.A. Winnik, A. Matvienko, and A. Mandelis, “Polypyrrole nanoparticles as a thermal transducer of NIR radiation in hot-melt adhesives”, J. Mater. Chem. 17, 4309–4315 (2007).

    Article  Google Scholar 

  6. G. Nystrom, A. Razaq, M. Stromme, L. Nyholm, and A. Mihranyan, “Ultrafast all-polymer paper-based batteries”, Nano Lett. 9, 3635–3639 (2009).

    Article  ADS  Google Scholar 

  7. M. Saurin and S.P. Armes, “Study of the chemical polymerization of pyrrole onto printed circuit boards for electroplating applications”, J. Appl. Polym. Sci. 56, 41–50 (1995).

    Article  Google Scholar 

  8. L. Groenendaal, F. Jonas, D. Freitag, H. Pielartzik, and J.R. Reynolds, “Poly(3,4-ethylenedioxythiophene) and its derivatives: past, present, and future”, Adv. Mater. 12, 481–494 (2000).

    Article  Google Scholar 

  9. T. Aernouts, T. Aleksandrov, C. Girotto, J. Genoe, and J. Poortmans, “Polymer based organic solar cells using ink-jet printed active layers”, Appl. Phys. Lett. 92, 033306 (2008).

    Article  ADS  Google Scholar 

  10. S.E. Shaheen, R. Radspinner, N. Peyghambarian, and G.E. Jabbour, “Fabrication of bulk heterojunction plastic solar cells by screen printing”, Appl. Phys. Lett. 79, 2996–2998 (2001).

    Article  ADS  Google Scholar 

  11. D. Vak, S.S. Kim, J. Jo, S.H. Oh, S.I. Na, J. Kim, and D.Y. Kim, “Fabrication of organic bulk heterojunction solar cells by a spray deposition method for low-cost power generation”, Appl. Phys. Lett. 91, 081102 (2007).

    Article  ADS  Google Scholar 

  12. R.M. Swanson, “Photovoltaics power up”, Science 324, 891–892 (2009).

    Article  Google Scholar 

  13. S.A. Backer, K. Sivula, D.F. Kavulak, and J.M.J. Frechet, “High efficiency organic photovoltaics incorporating a new family of soluble fullerene derivatives”, Chem. Mater. 19, 2927–2929 (2007).

    Article  Google Scholar 

  14. E. Ahlswede, W. Mühleisen, M.W.M. Wahi, J. Hanisch, and M. Powalla, “Highly efficient organic solar cells with printable low-cost transparent contacts”, Appl. Phys. Lett. 92, 143307 (2008).

    Article  ADS  Google Scholar 

  15. C. Deibel, A. Baumann, and V. Dyakonov, “Polaron recombination in pristine and annealed bulk heterojunction solar cells”, Appl. Phys. Lett. 93, 163303 (2008).

    Article  ADS  Google Scholar 

  16. X. Chen, C. Zhao, L. Rothberg, and M.K. Ng, “Plasmon enhancement of bulk heterojunction organic photovoltaic devices by electrode modification”, Appl. Phys. Lett. 93, 123302 (2008).

    Article  ADS  Google Scholar 

  17. E. Kymakis, N. Kornilios, and E. Koudoumas, “Carbon nanotube doping of P3HT:PCBM photovoltaic devices”, J. Phys. D Appl. Phys. 41, 165110 (2008).

    Article  ADS  Google Scholar 

  18. V.D. Mihailetchi, H. Xie, B. Boer, L.J.A. Koster, and P.W.M. Blom, “Charge transport and photocurrent generation in poly(3-hexylthiophene):methanofullerene bulk-heterojunction solar cells”, Adv. Funct. Mater. 16, 699–708 (2006).

    Article  Google Scholar 

  19. F.C. Chen, Y.K. Lin, and C.J. Ko, “Submicron-scale manipulation of phase separation in organic solar cells”, Appl. Phys. Lett. 92, 023307 (2008).

    Article  ADS  Google Scholar 

  20. C.W. Chu, H. Yang, W.J. Hou, J. Huang, G. Li, and Y. Yang, “Control of the nanoscale crystallinity and phase separation in polymer solar cells”, Appl. Phys. Lett. 92, 103306 (2008).

    Article  ADS  Google Scholar 

  21. J.Y. Kim, S.H. Kim, H.H. Lee, K. Lee, W. Ma, X. Gong, and A.J. Heeger, “New architecture for high-efficiency polymer photovoltaic cells using solution-based titanium oxide as an optical spacer”, Adv. Mater. 18, 572–576 (2006).

    Article  Google Scholar 

  22. M.O. Reese, M.S. White, G. Rumbles, D.S. Ginley, and S.E. Shaheen, “Optimal negative electrodes for poly(3-hexylthiophene):[6,6]-phenyl C61-butyric acid methyl ester bulk heterojunction photovoltaic devices”, Appl. Phys. Lett. 92, 053307 (2008).

    Article  ADS  Google Scholar 

  23. W. Ma, C. Yang, X. Gong, K. Lee, and A.J. Heeger, “Thermally stable, efficient polymer solar cells with nanoscale control of the interpenetrating network morphology”, Adv. Funct. Mater. 15, 1617–1622 (2005).

    Article  Google Scholar 

  24. K. Kim, J. Liu, M.A.G. Namboothiry, and D.L. Carroll, “Roles of donor and acceptor nanodomains in 6% efficient thermally annealed polymer photovoltaics”, Appl. Phys. Lett. 90, 163511 (2007).

    Article  ADS  Google Scholar 

  25. C.J. Ko, Y.K. Lin, F.C. Chen, and C.W. Chu, “Modified buffer layers for polymer photovoltaic devices”, Appl. Phys. Lett. 90, 063509 (2007).

    Article  ADS  Google Scholar 

  26. M. Reyes-Reyes, K. Kim, J. Dewald, R. Lopez-Sandoval, A. Avadhanula, S. Curran, and D.L. Carroll, “Meso-structure formation for enhanced organic photovoltaic cells”, Org. Lett. 7, 5749–5752 (2005).

    Article  Google Scholar 

  27. R.D. Deegan, O. Bakajin, T.F. Dupont, G. Huber, S.R. Nagel, and T.A. Witten, “Capillary flow as the cause of ring stains from dried liquid drops”, Nature 389, 827–829 (1997).

    Article  ADS  Google Scholar 

  28. C.N. Hoth, P. Schilinsky, S.A. Choulis, and C.J. Brabec, “Printing highly efficient organic solar cells”, Nano Lett. 8, 2806–2813 (2008).

    Article  ADS  Google Scholar 

  29. R. Green, A. Morfa, A.J. Ferguson, N. Kopidakis, G. Rumbles, and S.E. Shaheen, “Performance of bulk heterojunction photovoltaic devices prepared by airbrush spray deposition”, Appl. Phys. Lett. 92, 033301 (2008).

    Article  ADS  Google Scholar 

  30. F.C. Chen, H.C. Tseng, and C.J. Ko, “Solvent mixtures for improving device efficiency of polymer photovoltaic devices”, Appl. Phys. Lett. 92, 103316 (2008).

    Article  ADS  Google Scholar 

  31. G. Li, V. Shrotriya, J. Huangi, Y. Yao, T. Moriarty, K. Emery, and Y. Yang, “High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends”, Nat. Mater. 4, 864–868 (2005).

    Article  ADS  Google Scholar 

  32. D. Gupta, M. Bag, and K.S. Narayan, “Area dependent efficiency of organic solar cells”, Appl. Phys. Lett. 93, 163301 (2008).

    Article  ADS  Google Scholar 

  33. J.B. Emah, R.J. Curry, and S.R.P. Silva, “Low cost patterning of poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate) films to increase organic photovoltaic device efficiency”, Appl. Phys. Lett. 93, 103301 (2008).

    Article  ADS  Google Scholar 

  34. T. Erb, U. Zhokhavets, G. Gobsch, S. Raleva, B. Stuhn, P. Schilinsky, C. Waldauf, and C.J. Brabec, “Correlation between structural and optical properties of composite polymer/fullerene films for organic solar cells”, Adv. Funct. Mater. 15, 1193–1196 (2005).

    Article  Google Scholar 

  35. X. Yang, J. Loos, S.C. Veenstra, W.J.H. Verhees, M.M. Wienk, J.M. Kroon, M.A.J. Michels, and R.A.J. Janssen, “Nanoscale morphology of high-performance polymer solar cells”, Nano Lett. 5, 579–583 (2005).

    Article  ADS  Google Scholar 

  36. F. Padinger, R.S. Rittberger, and N.S. Sariciftci, “Effects of postproduction treatment on plastic solar cells”, Adv. Funct. Mater. 13, 85–88 (2003).

    Article  Google Scholar 

  37. O. Yoshikawa, T. Sonobe, T. Sagawa, and S. Yoshikawa, “Single mode microwave irradiation to improve the efficiency of polymer solar cell based on poly(3-hexylthiophene) and fullerene derivative”, Appl. Phys. Lett. 94, 083301 (2009).

    Article  ADS  Google Scholar 

  38. V. Shrotriya, “Polymer power”, Nat. Photonics 3, 447–449 (2009).

    Article  ADS  Google Scholar 

  39. J. Bohandy, B.F. Kim, and F.J. Adrian, “Metal deposition from a supported metal film using an excimer laser”, J. Appl. Phys. 60, 1538–1539 (1986).

    Article  ADS  Google Scholar 

  40. G.B. Blanchet, C.R. Fincher, and I. Malajovich, “Laser evaporation and the production of pentacene films”, J. Appl. Phys. 94, 6181–6184 (2003).

    Article  ADS  Google Scholar 

  41. R. Fardel, M. Nagel, F. Nüesch, T. Lippert, and A. Wokaun, “Fabrication of organic light-emitting diode pixels by laser-assisted forward transfer”, Appl. Phys. Lett. 91, 061103 (2007).

    Article  ADS  Google Scholar 

  42. S.H. Ko, H. Pan, S.G. Ryu, N. Misra, C.P. Grigoropoulos, and H.K. Park, “Nanomaterial enabled laser transfer for organic light emitting material direct writing”, Appl. Phys. Lett. 93, 151110 (2008).

    Article  ADS  Google Scholar 

  43. M.A. Rahman, P. Kumar, D.S. Park, and Y.B. Shim, “Electrochemical sensors based on organic conjugated polymers”, Sensors 8, 118–141 (2008).

    Article  Google Scholar 

  44. N.M. Kocherginsky, W. Lei, and Z. Wang, “Redox reactions without direct contact of the reactants. Electron and ion coupled transport through polyaniline membrane”, J. Phys. Chem. A109, 4010–4016 (2005).

    Google Scholar 

  45. Z.F. Li and E. Ruckenstein, “Improved surface properties of polyaniline films by blending with Pluronic polymers without the modification of the other characteristics”, J. Colloid Interf. Sci. 264, 362–369 (2003).

    Article  Google Scholar 

  46. N.B. Clark and L.J. Maher, “Non-contact, radio frequency detection of ammonia with a printed polyaniline sensor”, React. Funct. Polym. 69, 594–600 (2009).

    Article  Google Scholar 

  47. S. Mu, C. Chen, and J. Wang, “The kinetic behavior for the electrochemical polymerization of aniline in aqueous solution”, Synthetic Met. 88, 249–254 (1997).

    Article  Google Scholar 

  48. A.C. Barton, S.D. Collyer, F. Davis, G.Z. Garifallou, G. Tsekenis, E. Tully, R. O’Kennedy, T. Gibson, P.A. Millner, and S.P.J. Higson, “Labeless AC impedimetric antibody-based sensors with pg ml-1 sensitivities for point-of-care biomedical applications”, Biosens. Bioelectron. 24, 1090–1095 (2009).

    Article  Google Scholar 

  49. A. Ramanavicius, A. Ramanaviciene, and A. Malinauskas, “Electrochemical sensors based on conducting polymer-polypyrrole”, Electrochim. Acta 51, 6025–6037 (2006).

    Article  Google Scholar 

  50. J. Jang, J. Ha, and J. Cho, “Fabrication of water-dispersible polyaniline-poly(4-styrenesulfonate) nanoparticles for inkjet-printed chemical-sensor applications”, Adv. Mater. 19, 1772–1775 (2007).

    Article  Google Scholar 

  51. J. Stejskal, I. Sapurina, J. Prokes, and J. Zemek, “In-situ polymerized polyaniline films”, Synthetic Met. 105, 195–202 (1999).

    Article  Google Scholar 

  52. D.P. Banks, C. Grivas, I. Zergioti, and R.W. Eason, “Ballistic laser-assisted solid transfer (BLAST) from a thin film precursor”, Opt. Express 16, 3249–3254 (2008).

    Article  ADS  Google Scholar 

  53. H. Esrom, J.Y. Zhang, U. Kogelschatz, and A.J. Pedraza, “New approach of a laser-induced forward transfer for deposition of patterned thin metal films”, Appl. Surf. Sci. 86, 202–207 (1995).

    Article  ADS  Google Scholar 

  54. I. Zergioti, S. Mailis, N.A. Vainos, P. Papakonstantinou, C. Kalpouzos, C.P. Grigoropoulos, and C. Fotakis, “Microdeposition of metal and oxide structures using ultrashort laser pulses”, Appl. Phys. A66, 579–582 (1998).

    ADS  Google Scholar 

  55. D. Toet, P.M. Smith, T.W. Sigmon, and M.O. Thompson, “Experimental and numerical investigations of a hydrogen-assisted laser-induced materials transfer procedure”, J. Appl. Phys. 87, 3537–3546 (2000).

    Article  ADS  Google Scholar 

  56. B. Thomas, A.P. Alloncle, P. Delaporte, M. Sentis, S. Sanaur, M. Barret, and P. Collot, “Experimental investigations of laser-induced forward transfer process of organic thin films”, Appl. Surf. Sci. 254, 1206–1210 (2007).

    Article  ADS  Google Scholar 

  57. N.T. Kattamis, N.D. McDaniel, S. Bernhard, and C.B. Arnold, “Laser direct write printing of sensitive and robust light emitting organic molecules”, Appl. Phys. Lett. 94, 103306 (2009).

    Article  ADS  Google Scholar 

  58. I. Zergioti, A. Karaiskou, D.G. Papazoglou, C. Fotakis, M. Kapsetaki, and D. Kafetzopoulos, “Femtosecond laser microprinting of biomaterials”, Appl. Phys. Lett. 86, 163902 (2005).

    Article  ADS  Google Scholar 

  59. P. Serra, J.M. Fernandez-Pradas, M. Colina, M. Duocastella, J. Dominguez, and J.L. Morenza, “Laser-induced forward transfer: a direct-writing technique for biosensors preparation”, JLMN 1, 236–242 (2006).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Zergioti.

Additional information

An erratum to this article can be found at http://dx.doi.org/10.2478/s11772-010-0076-x

About this article

Cite this article

Kandyla, M., Chatzandroulis, S. & Zergioti, I. Laser induced forward transfer of conducting polymers. Opto-Electron. Rev. 18, 345–351 (2010). https://doi.org/10.2478/s11772-010-0045-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11772-010-0045-4

Keywords

Navigation